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LASER ANNEALING OF ION IMPLANTED SEMICONDUCTORS.

MECHANISM OF AMORPHOUS CRYSTALLINE TRANSITION.

1. INTRODUCTION - .

One of the most fascinating debates in the field of Semiconduc-

tors Physics in recent yearsr centers on the fundamental interpre-

tation of laser annealing. The question of the energy transfer .

from an intense beam to a disordered material, such as amorphous

silicon, resulting in the crystallization of the amorphous substan- -"-

ce has been approached from two different points of view, both

referring to a set of fairly clear experimental results. On one

hand, a claim has been made that the laser beam simply heats the

sample up to melting the amorphous material which on cooling crys-

tallizes from melt 1 4 } .On the other hand, one has considered that

amorphous to crystalline phase transition can occur at ]ow tempera- .

tures without passing through the molten -,tate(5 ). Many arguments

have been developped in support of these irterpretations. A large

number of publications have appeared in the itterature. LA

The results we are reporting here constitute a contribution

toward the elucidation of the mechanism of amorphous to crystalline "

transition. Our effort has been focussed on the two extreme time

scales infinite time observation of the structural modifications

which have been retained after laser annealing and very short time
the evolution of the system in the femtosecond range. We have attemp-

ted to correlate the steady state observations with the sub-picose- L S

cond modification of the system. If the general conclusion is that

random nucleation in the high density plasma fluid state governs the ,

final crystallization of the system, we are using essential links .

to demonstrate such an opinion. The description of the system in

the highly excited non linear regime maintained during the irradiation

of 100 Fs is not available. The description of the relaxation pro- -

cesses in the fs range is not clearly established. The relation

between the excited short living fluid and melting is not known.
The theory of melting and recrystallization in this regime is not

cstab I ished. I.,,

-- ',.-
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We are presenting here a gread deal of interesting and important ........

results. They are contributing to ask the right questions more than

they have solved the essential problems. As a result of this effort

nevertheless, we are convinced today that the radiation energy in-

troduced into the condensed matter is retained in a highly excited

phase with more than 1022 antibonding states as long as the radia- I

tion field continues to arrive on the system. The evolution of this

particular fluid is the interesting question with which one should

be concerned now.

In addition to the fundamental interest, laser annealing has

been considered to have a strong potential in the technology of

semiconductor doping by ion implantation. For all these reasons,

the attention of a large audience has been focussed on this problem.

We believe that the results, we are presenting here show the

possibilities and set the limits of the use of laser annealing in

the semiconductor technology.

2. RAMAN SPECTROSCOPY OF GALLIUM ARSENIDE AMORPHOUS TO CRYSTALLINE

TRANSITION INDUCED BY LASER ANNEALING.

Raman spectroscopy of laser annealed semiconductors rendered

amorphous by ion implantation gives the possibility to follow the

recrystallization of the material. This technique which has succes-
(6,7)fully been applied to silicon can as well be used to characte-

rize ionic semiconductors as Gallium Arsenide. • 0

2.1. Experimental techniques.

Semi insulating GaAs have been implanted and laser annealed at

the Laboratoire- Central de Recherches de la Thomson C.S.F. (Corbe- -
yue) Te os hoenwa 2114 2 1

ville). The dose chosen was 2.104As/cm + 2.1014 Ga/cm2 under

300keV in order to keep a correct stoechiometry in the samples.

Laser annealing was achieved by using a YAG laser equipped with a

frequency doubler. This laser deliveres energy pulses in the energy
2

range 0.3 to 0.6J/cm at a wavelength of 530nm. Raman spectra were

recorded by using the 488nm line of an Argon laser. The diameter

of the spot of the Argon laser was of the order of 80 m. This size, . ...

compared to the 1mm diameter spot of the YAG laser permits a rather

good Raman characterization of all the surface of the annealed
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region by sweeping the Raman laser spot inside the annealed

zone.

2.2. Experimental results.

Figures 1 and 2 present the Raman spectra of two GaAs samples

in a backscattering geometry on faces (100) and (110). On these 9

two different faces, the selection rules are complementary, the TO

phonon being forbidden on the (100) face, the LO phonon forbidden

on the (110) face. For perfectly crystalline samples, the selection

rules are verified, the residual forbidden peaks in each case are

due to residual misalignment. The frequencies of the lines are :1

respectively wTO 268 cm 1 = 291 cm- 1 , their widthes, measuredTO ,¢LO .

with an instrumental resolution of 2 cm- , is equal to 3.6 cm- for
14 2 Mboth peaks. After an implantation of 2.10 ion Gallium per cm and

14 22.1014 ion Arsenic per cm , the samples are rendered amorphous and
the spectra observed are typical for this kind of amorphous material
(8) i.e. a density of states spectrum.

After laser annealing, the spectra are drastically modified.
For a low energy density, the forbidden peaks are respectively - -

activated for each face ; this is especially spectacular for the (100)

face for which the forbidden TO is larger than the allowed LO. More-

over, the frequencies of these peaks are shifted towards the low

frequency region and their widthes are broadened to more than 6 cm -

As the annealing energy is increased, the forbidden peaks intensities

tend to decrease, their frequency shift and their widthes reduce.

However, the normal characteristic are not completely recovered at
20.6J/cm especially for the (100) face.

The spectacular behaviour of the (100) face for low energy annea-

ling has lead us to study the Raman spectra at the periphery of the

annealed zone by sweeping the Raman laser spot across the limit of

the annealed region where the irradiation energy continuously varies.

As can be seen in Figure 3, the spectra are continuously modificd,

the amorphous band at 250 cm' shifts and get structured changing

into the TO phonon. The allowed LO phonon appears only as a shoulder
on this band. The polarization analysis has been made on the (100)

face sample, with the incident electric field parallel to the <011>

axe, the scattered field been either parallel or perpendicular to
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the .Lncident field. For this last polarization both peaks TO and

LO are forbidden in a perfectly crystalline sample whereas the

LO phonon normally appears when both fields are parallel. In
Figure 4, it can be seen that the selection rules are well observed

when the analysis is made at the center of the annealed zone but

are not at the intermediate region, where spectra are rather iden-

tical for both polarization.

The more important feature presented here seems to be the gradual

Utransition from the *amorphous spectrum to a crystalline one. This

* fact involves a continuous variation of the degree of order versus

the annealing density energy. The late apparition of the longitudi-

*nal optical phonon when increasing the annealing energy confort this

IL hypothesis as the existence of this phonon is due to long range
* Coulombian forces. A way of understanding such a continuous varia-

tion is to consider the presence of microcrystallitesin the annealed

region. Such crystallites have yet been observed in laser annealed

Silicon and Gallium Arsenide~9 1 ~ There are very few published

results on Raman spectroscopy of small crystals. The only extensi-

vely studied case is the graphite (1)where only very small size

crystallites are available. In this material, new peaks as well as

Ua shift of the high frequency E2g first order peak are reported and
attributed to the wave vector selection rules relaxation. The shift

* observed is toward the high frequency region. This is not contradic- *

tory with our observation of a low frequency shift in GaAs if the

special shape of the dispersion curves of graphite is considered.

In this ma'terial, the highest branch of the dispersion curves reaches

a region of higher frequency (,,1600 cm 1), than the zone center Eg
mode (1581 cm1 )( ) Furthermore, this Eg mode is transformed

-1..into a band situated at higher frequency (1600 cm ) in the amorphous
state of graphite (glassy Carbon) which is an opposite behaviour as

compared to GaAs or Si.

Only a complete calculation of the lattice dynamic of a micro-

crystallite would fully justify the hypothesis of the size effect.

A similar computation has already be done at the laboratory on

Silicon nolThe extension of this model to GaAs is not straight-

forward because of the presence of the long range Coulombian forces

which ensure the stability of this ionic crystal. This extension is

the object of the following chapter.
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3. THE VIBRATIONS OF A GALLIUM ARSENIDE MICROCRISTALLITE.

3.1. Lattice dynamics of thin ionic slab of GaAs.

The complete calculation is presented in three publications

added in annexe (Al). We just summarize here the method and the

results.

A full lattice dynamics of a microcrystallite is outside our

possibilities as it should need the exact knowledge of the geome-

tric shape of the grain and as it would need the diagonalization

of matrix of order 3N where N is the number of atoms inside the

crystallite. Even for very small crystallites N exceeds some

thousands so that computation duration should be excessive. That is

the reason for which the crystallite has been modelized by a thin

layer of material inifinite along two dimensions and finite along

the third. The finite dimension should be sufficient to introduce a
shift on the frequencies of vibration as compared to a crystal infi- - -.--.

nite along 3 dimensions.

To resolve this problem, it is necessary to solve the equations

of motion of the atoms of the slab, that is to say to diagonalize

the corresponding dynamical matrix. To simplify the problem, the

choice of a cristallographic orientation of the slab is of premium
importance as symetry consideration can reduce the computation. In -.

our case, the slab is parallel to the plane (111). With classical

notations, the equation of motion are

mkU(lk ) = - 0 (ik;l'k')u(l'k') (1)
.... -...

The slab being infinite along two dimensions, the cyclic condition

of Born Van Karman can be applied along these two directions. The

solution of equation (1) can be expressed in the form

va ( 3 k)
u (1k) a/2 expf-iwt+2i7.i(lk)} (2)

mk

-% '"%

-,.,. .''.'',."..0
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where the vector v(13, K) depends only on 13 the parameter which

labels the cells along the limited dimension. . S

y is a two dimensional vector of the two dimensions B7'llouin

zone associated to the structue. By reporting (2) into (1), we

obtain. .

2°

-) 4)a (1k;l1'k)
vD(13k ) D'(1k112 (mkmk' 1-k (4)

Da is the dynamical matrix, being the matrix of force

constants.

Since cyclic boundary condition does not apply to the limited
dimension, no further reduction is possible'except those associa-
ted to symmetry considerations. Under these consideration the

3 x 3 matrixes D (13 K, LI', K') which describe the interactions

between the plane lattices dke the form

iA- 0 0
D'(1 3 9 K, L 3 0 K') 0 A-B 0B)

0 0 A2 7

which shows that the modes of vibration can be separated in two

groups, one doubly degenerated which describes the vibrations

parallel to the slab, the other non degenerated which describes

the vibrations perpendicular to the slab.

To go further, we need now to choose a model of force constants.

The long range interactions and the short range interactions must
be processed differently as it is well known that Coulombian forces *

introduce discontinuity. . . .

DaB( 3k~l k' ) = .1 2 (4 :i.f.,::'.:- 1
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For short range interaction, the model choosen is the Valence

ForCe Field force constants with 10 parameters describing the

linear and angular bondings between first and second neighbours.

The potential energy for this model take the form

-As + (Arij) +rip Z Ar +Ga-G- Ga-Ga ik

2 v 2E a (Arik) +r1o . Arjl+ E (Arj1 )
Ga-Ga As-As As-As

k 2r 0
2  26. 0 jil )2 0- k)2 -O -

+ 2 As-Ga-As +----- E Ga-As-Ga Oijk) +

k k
rr E Arji ril+ rr Arij Ar

As-Ga-As Ga-As-Ga 1 r

where E, X, p, v, a, v, k0, k;, krr are the ten parameters and

r and r1 the first and second nearest neighbour distances.

3.2. Results and discussion.

The frequencies of vibrational modes of a thin slabs have been

calculated for a thickness varying from 2 to 25 unity cells.

The Figure 5 shows the variation of frequency of six modes

versus the thickness of slabs. These modes are grouped in two

optical modes (TO and LO) and four surface modes. The two opti-

cal modes are the more interesting as they are the modes that

correspond to the Raman active TO and LO modes in the limit of

large number of unit cells (infinite crystal). As can be seen,

the frequencies of these modes tend very rapidly to their limits.

After 10 unit cells the frequencies have reached a stable value

corresponding to the frequencies of the infinite crystal. For a

small number of cells than ten, the frequencies of the TO and LO

modes are inferior to the bulk frequencies, result which corre-

lates the Raman spectra observed. The surface modes are not easily

seen by Raman spectroscopy so that their interest is only theoric

::: ..
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as they cannot be compared to experimental results. Another inte-

resting theoretical deduction is that for a given slab of definite

thickness, all the modes except the surface ones, fall on the .

dispersion curves of the infinite structure of GaAs (Fig..6). The.

four missing point at the edge of the Brillouin zone correspond

to the four surface modes. These surface modes can thus be consi-

dered as a superposition of the four missing modes. This fact

implies that the continuum of frequencies obtained by several

authors when calculating solution for different wavevectors on the

plane of the slab, is the projection of the dispersion surface on

the two dimensional Brillouin zone.

4. EXPERIMENTAL DETERMINATION OF THE TEMPERATURE OF SILICON AT

THE SPOT OF A CONTINUOUS LASER.

The possibility to characterize the laser annealing during the

impulsion by using the Raman spectroscopy was evidenced by Compaan

et al. ( ) Their mcasures showed that the temperature reached

immediately after the end of the pulse was of the order of 400 0 C.

This result, which is still controversed, is the last experimental

- evidence for a non thermal annealing during manosecond scale. To

test the validity of this kind of measurements, we have measured

the temperature of a Silicon sample during a continuous laser irra-

diation by using Raman spectroscopy. Three quantities have been

studied : the Stokes to anti-Stokes ratio, the shift of the normal

mode and the broadening of the normal mode.

4.1. The Stokes to anti-Stokes ratio.

Raman scattering consists of an inelastic scattering of the

light by quantified excitations. In the case of a semiconductor, "

the elementary excitations responsible of the scattering are the

phonons. Two processes coexist in the scattering.

Tn the Stokes process, incident photons'of frequency wi create

phonons of frequency n and are scattered with a frequency ws=i-.-

In the anti-Stokes process, the incident photons interact and

arihilate the phonons and are scattered with a frequency WAs=i+.-

I II I I I III I, , , I -,,-'i. + +
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Raman spectra are thus formed by a set of peaks symetrically

disposed in comparison with the incident frequency wi. The inten-
sity ratio of these two processes is governed by the statistic

of Bose-Einstein

I - n+1s where n 1 / (explQ/kTj-1)
As

In fact, this term only describes the thermodynamical part of the
intensity ratio and in order to be accurate, it is necessary to

take into account some corrective terms.

First, the Raman effect is a scattering phenomenon and then,

the scattered intensity varies as the fourth powe'r of the frequency

of the incident light. More precisely, it varies as the product
3

Wi where wand ware the incident and scattered frequencies
(Ws = i- ., 0 being the phonon frequency). This term introduces

3the corrective factor (ws/W As) which is temperature independent.

Another dependence upon the incident frequency is due to a

resonance effect. Raman scattering intensity increases as the

incident-light comes close to the direct gap of the material.

This resonance term is difficult to compute so we have chosen to

use experimental results obtained at the laboratory (14) . This correc-S(i'Ws) %
tive factor S( 1 , 5 ) is temperature dependent by the intermediaryof the energy ga vaiiation. However, this temperature dependence

can be neglected when the energy gap is far from the energy of

incident wavelength which is the case in our conditions.

A third correction is due to the difference between the values
of the absorption coefficient at the incident and scattered energy.

This gives a correction of the form

ai + 'As

ai + aAs

Besides all those theoretical corrections, these is an experi-

mental correction induced by the variation of the overall response

of the spectrometer. This factor K can be measured with a standard

spectral lamp. With all these corrective factors, the ratio of
.... .... -g initanities is expressed by the equation
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- ~ Ci)..-Sow .. '

s i s ,WAs .  (,wAs *)

In the case of Silicon, the entire correction has been

computed and for an energy of ,i of 20.492 cm is equal to 0.83.

Is n+1
= 0.83 - = 0.83 exp ()iQ/kT)

As

A measure of the Raman intensities of Stokes and anti-Stokes

peaks versus temperature has been realized on a Silicon heated
in an oven. The points on Figure 7 represent the ratio of IAs/Is .

On the same figure is represented by a continuous line the theore-
tical function I As/i = 1.2 exp (-74.8.3/T). As can be seen on the

figure, the fit is only good at low temperature. At high tempera-

ture, this curve is significantly lower than the experimental
points. The reasons of this discrepancy is the incertitude on some
of the coefficients which form the correction stated above. In

order to increase the precision of the measure, we have choosen 0

to realize a least square best fit of the experimental results
with a theoretical curve of the form

IAs/i = A exp (-748.3/T) where A is the parameter to be adjus-
ted. This computation gives a value for A of 1.284 so that we can
practically measure the temperature by using the formula

IAs/I s = 1.284 exp (-748.3/T) 0

This curve is represented on Figure 7 by the interrupted line.
The temperature obtained by this method is exact with a precision

of about 20 %.

4.2. Anharmonic properties of Silicon.

The ratio between the Stokes and anti-Stokes intensities is
not the only quantity which can be used to determine the temperature.
Anharmonic properties which involve a shift and a widening of the
Raman peaks an be also used. These effects are due to interaction

between phonons. The simpler model (15 , 16) supposes that the optical 6
phonon anihilates giving rise to two acoustical phonons with half
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the frequency of the optical mode. In this case, the width of

the optical phonon responsible of the Raman peak can be evaluated

to

F (T) r P(0) 11 -2(1

v - . .~~ -K . .o

-1 - .

The damping constant and the frequency shift have been inves-

tigated systematically as a function of temperature. Figure 8

gives the temperature variation of the damping constant (T) ed •

between 5 and 1400K. The dashed curve represents P(T) calculated

from the relation.

This equation (1) is an approximate expression for the tempera-

ture dependence of the damping constant based on three-phonon pro-

cesses (cubic anharmonicity in second order) and the simple Klemens

model t t seriously underestimates the damping constant at high

temperatures. We attribute this discrepancy at least in part to the

neglect of four-phonon processes.

It is of interest to investigate whether this discrepancy can

lie eliminated by generalizing Equation I to include the contribution

of four-phonon processes. Following the approach of Klemens we1 7A

write the kinetic equation for the net rate of decay of an incidenttepea

phonon into three thermal phonons in the form

d
-d- (6n 0) -B 1(6n 0+no)(n1+1) (n 2 +1) (n3+1) (2

- (6n.+n 3+1)nn 2n3 1

where 5n is the deviation of the incident phonon occupation number.

from its thermal equilibrium value n and B is a constant. Using

tbe equilibrium condition

n (n1 )+1)(n2+n)(n 3 +)) ((n)+.)n.n2 n3  0 (3)

.% _- o , -,= '°

whee n0 isth dvitio o te ncdet honn ccpaio nmbr •.
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We can rewrite Eq.(3.5) as :.)

d (6n0 ) = B(nln 2+nln 3+n 2n3+nl+n 2
" 3'g

+n3+1)n 0 ..

"" Energy conservation can be satisfied in the simple Klemens .'-

fashion by setting)1 = 2 33. Consequently, n =n2=n3 - .
: The generalization of Eq.(3.4) to four-phonon processes then

takes the form

F(T)A (1+ +B 1+-,

-~ P(T)1=A (1 X 2)+~+ ~ Y (5)e x  1 ey  1 (eY-1) 2  5 .- '-'.,

Where y = Xwto/ 3 KBT and A and B are constants. In the high-tempe-

rature limit', the factors multiplying A and B in Eq.(5) vary as

U2 T and T2 , respectively.

Equation (5) has been used to fit the experimental data presen-

ted in Figure 8 by suitably choosing the constants A and B. The

best values of A and B are found to be 1.295 and 0.105 cm-1 , res-

pectively, and the resulting plot of r(T) vs T is given by the solid

curve in Figure 8. We see that the agreement between the calculated

curve and the experimental points is now quite good.

The experimental results for the line position Q2(T) as a func-

tion of T are shown in Figure 9. Also shown is the fit to the data

(solid curve) specified by the expressions

(T)= w A(T) (6)

and

~(T =c . +D ) (1+ + , (7)
e 1 ey - 1 (ey- 1)

2

Where4a 0 , C and D are constants with the values 528, - 2.96, and .

- 0.174 cm" 1, respectively. Equation (7) is the analog of Equation

(5) and specifies the contributions of three-phonon and four-phonon
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processes to the frequency shift. The agreement between the expe-

S. rimental points and the solid curve is seen to be good.

If we try to fit the experimental data with three-phonon

processes only by omitting the 'term in Eq.(3.10) with the factor

D, we obtain the dashed curve in Figure 9 with = 529 cmI and

C = 4.24 cm 1  Although this curve fits the data well at tempera- '

tures up to 600K, it is clearly inadequate at higher temperatures.

This demonstrates the necessity of including terms corresponding

to four-phonon processes in the expression for A(T).

In principle, the four-phonon contributions in Equations (5)

and (7) should include terms arising from difference processes.

We have omitted such terms on the grounds that their inclusion

would simply introduce additional terms varying as T and as T2

in the high-temperature limit and would not add any new qualitative

features.

The temperature determined by measuring the width and the frequen-

cy shift of the Raman peak and using the formulas with the fitted

parameter can give a good correlation with the temperature measured

by using the Stokes to anti-Stokes ratio. >.-.-

As an example of using these methods, we give now a determina-

tion of the temperature reached at the spot of an Argon laser

focussed onto thin layers of Silicon deposited on Silicon substrates

and on Silica substrates.

4.3. Temperature of a thin layer of Silicon under continuous
laser irradiation.

Thin layers of Silicon have been deposited by C.V.D. technique

(Chemical Vapour Deposition) at a temperature of 700°C. The layer

of Silicon is then a polycristalline material. Two kind of substra-

te have been used Silica and monocristalline Silicon. The diffe-

rence of thermal conductivity of these two materials gives rise to

a different behaviour under laser irradiation. The laser used to

irradiate the samples is a continuous Argon laser. rhe power density %

of the irradiation has been varied between 0 and 10kW/cm2 .
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4.3.1. Fused Silica substrate.

-,-- ---

The Raman spectra for this layer versus the irradiation power

are presented on Figure 10. The spectra shows a dissymetry towards

the low frequencies region whioh is due to the presence of strains

inside the thin layer. This fact prevents the use of the frequency

shift and the width of the Raman peak. These strains are due to 0

the difference between the dilatation coefficients of Silica and

Silicon and this problem could be neglected in the case of an homo-

geneous sample.

The temperature of the layer has thus just be determined using

the curve of the Figure 7.

4.3.2. Silicon substrate.

The Raman spectra of a deposited layer of Silica on Silicon

are presented on Figure 11. In this case, the thermal conductivity

is so high that the temperature elevation is very small. The Figure
12 shows the temperature for both substrates versus the power

irradiation. As can be seen, the temperature exceeds 10300 C for

the Silica substrate whereas the temperature does not reach 100C

under the same conditions for the Silicon substrate.

5. RAMAN SPECTROSCOPY OF VERY HEAVILY DOPED SILICON.

Ionic implantation followed by laser annealing can produce new

samples doped with a concentration of impurities which can exceed
the solubility limit. This new material could present a technolo-

gical interest in the field of solar cells or I.I.L. logic devices.

The Raman spectroscopy can characterize the doping effect by

controlling two different characteristic of the spectra. The first

one is the occurence of new peaks in the spectra ; these peaks are

related to the position of the implanted impurity. The second one

is the interaction between free carriers and normal or impurity 9

modes. This effect is responsible of a deformation of the line shapes

of these modes.
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5.1. The vibrational modes-introduced by the defects.

• . -

When defects are introduced in a perfect crystalline lattice,

the translation symetry is suppressed and the vibrational proper-

ties of the crystal are modified. The calculation of the new fre-

quencies is rather difficult. The simplest method to achieve it

is the use of the Green functions first introduced by Li-fshitz (17 )

and then used by Dawber and Elliott (18) in a'model describing the

vibrations of a uniquc substitutional impurity in the Silicon.

Depending upon the mass of the impurity two kind of vibrations

* are distinguishable. When this mass is higher than that of the

matrix, the vibratiofis are of the "band mode" sort. These vibra-

tions can propagate along the lattice. When the mass of the impu-

*rity is lower than that of the matrix, the vibrations are of the

*"localized mode" sort which are located in the neighbourhood of

the impurity. Th~e Raman spectroscopy is usually more sensitive to

localized modes than to band modes. In the Silicon, the only light

*iMpUrity with a high solubility is the Boron so this impurity has

been liely investigated by optical spectroscopy. The localized

*mode induced by this atoms in substitutional positions have been

observed some times ago in diffused or implanted materials by

iiiFrared spectrometry (19) or Raman spectroscopy(2 0,21 ).

5.2. Free carriers-phonons interaction in heavily doped Silicon.

The simultan-eous'presence of two kind of excitations a discrete

one and a continuous one gives rise in'the Raman spectrum of Sili-

* con to specific 'effect("'). The discrete excitation corresponds

to the phonon and the continuous one to the free carriers. Both

excitations are Raman active, the phonon giving a sharp peak contri

bution to the spectrum, the free carriers giving a very broad conti-

nuum. The coupling between these two excitations modifies the Raman
spectrum in such a way that what is observed is not only a simple

superposition of the sharp peak upon a broad continuum but an inter-

ference which modify the shape of the phonon line (Fano effect)

This shape which is Lorentzian in Lorentzian in absence of free

carriers (1w) ropaga becomes assyetric in presence of elec-

tronic following that 0 the equation

lcaized where q is proportional to the ratio of the
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tensors for purely lattice and purely electronic Raman scattering.

E - where SI is the "dressed" phonon frequency and r the phonon
damping in presence of free carriers but without interference. he

* sign of the factor q governs the sense of the nssymetry observed on

*.- the spectrum. This sign is itself depending upon the type of the

free carriers (electrons or holes). The doping with P type impuri-

ties (Boron, ) induces anassymetry towards the high frequency

whereas doping with n type impurities gives rise to assymetry towards

the low frequency region.

5.3. Experimental results.

5.3.1. Laser annealingofp-doped Silicon.

The sample used for this study is a Silicon (111) implanted witi,
16 2Boron (10 ions/cm 70 kV). Boron bcing :, lipht ion, the material

is not continuously amorphized. After implantation, the Raman spec-
trum of the sample is still a cristalline one. When compared to the .
Raman spectrum of the sample before implantation, only a decreasing

* in intensity and a small assymetr- towards low frequency are noticea-

hle (Fig. 13). This assymetry is due to str'ii i0 , lced by the implan-
tation process and to small l It, ,,- f iwurphous material. A very _.
small peak appLars at 018 cm which is the frequency of the loc:Jil
zed mode due to B11 isotope in substitutional position. After i-"

diation with a YAG laser (0.6J/cm4 at 1.06Um + 0,2J/cm2 at 0,53w,),.

the center of zone mode presents a strong assymetry towards the high 
frequencies and a rather high intensity mode appears at 618 cm 1 .
This peak too, presents an assymetry towards the high frequencies.
The appearance of the 618 cm peak is a proof of the high concentra-

tion of substitutional Boron. The assymetryof both peaks (normal mode 0

and localized mode) is the indication of a high free carrier concen-
tration. The comparison of laser annealing and thermal annealing is

done on Figure 14. The thermal annealing was achieved in an oven at

a temperature of 1000°C during 2 hours. As can be seen, the Raman _

spectra are more or less similar, the intensity of the Boron local
mode being a little more intense in the case of the laser annealing.

• ', -'. " .0 ,
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Figure 14 Comparison of Raman spectra of Boron implanted Silicon

laser annealed and thermal annealed.
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5.3.2. Laser annealing of conmpensated Silicon.

Phosphorus ions in substitutional site do not give rise to local '

mode because of their mass which is of the order of the Silicon mass

These ions should give a band mode but these band modes are usually

difficult to observe by Raman spectroscopy. However, when a Silicon

sample is doped with Boron plus Phosphorus, the Phosphorus atoms can

modify the local modes due to Boron atoms. As a matter of fact, the

local mode of isolated Boron in substitutional positions is triply

degenerated. If a Phosphorus atom is situated in the neighbourhood

of the Boron atom, the symetry is modified and the triply degenerated

mode at 618 cm-  is split into two modes at 628 cm- I aad 600 cm- 1(2 4) .

The Figure 15 presents the Raman spectra of Silicon implanted with

2.1016 Boron per cm2 under 50 kV and 2.1016 Phosphorus per cm 2. The

implantation energies have been choosen in order to approximately

balance the penetration depthes of both impurities. After implanta-

tion a spectrum characteristic of amorphous material is observed.

After laser annealing (0,6J/cm at 1,06 m + 0,2J/cm 2 at 0,53 m), the

Raman mode of the zone center is dissymetric towards the lower fre-

quencies region, proof of a surcompensation of free carriers as com-

pared to the sample implanted with Boron only. The concentration in

electrons is thus superior to that of holes on the region sampled

by 'he Raman laser beam. The local mode does not see its frequency

modified. The intensity of this mode is higher than for a sample

implanted with Boron only because of the reduction of the interfe-

rence due to the partial compensation of free carriers. The fact that

the frequency of this mode has not moved,seems to prove that there

are very few Boron and Phosphorus atoms on nearest neighbours sites .

On the contrary, in the case of the thermal annealing of the same

sample (1000°C - 2 hours), the local mode has moved to 626 cm-

which is a frequency characteristic of a pair mode B-P. The other

peak of a pair mode situated around 600 cm 1 is not observed. The

normal mode is slightly assymetric towards the lower frequencies.

The sample is thus rather well compensated with just a weak over
A. _

concentration of electrons on the path of the Raman laser beam.

:-.% , . .

- II~~
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Laser annealing and Thermal annealing have thus different effects

on Boron + Phosphorus implanted Silicon. In the case of thermal

annealing, atoms of Boron and Phosphorus have enough time to pair

on neighbours lattice sites whereas in the case of Laser annealing

this is not possible.

5.3.3. Laser annealing-of n-doped Silicon.

The samples used were cut along a (100) face and implanted with

Arsenic dose varying from 5.105 cm 2 to 5.1016 cm-2 . After implan-

tation, the samples were subjected to the irradiation beam of a Q
switeched YAG laser equiped with a frequency doubler. The duration

of the pulses was typically 100ns and energy density up to 2.SJ/cm2.
The processing of the samples was done at the "Groupe PHASE" at the

C.R.N. (Strasbourg). A.

After implantations, the amorphous character of each sample has

been verifyied by detecting the classical "density of states" Raman

spectrum of Silicon. This typical broad band situated at 480 cm-1  -

is due to the scattering of the light induced by all the phonons in

the Brillouin zone in contrary to the sharp peak at 520.5 cm 1 obser-

ved on crystalline Silicon for which only the mode of the center of

the zone is active. For the samples implanted in the range 5.1015 to .1
16 23.10 As/cm 2 , the large amorphous band is well observed and no thin

crystalline peak can be observed in addition to this band. This signi-

fies that these samples are amorphous on a thickness larger than the

penetration depth of the laser. For the last sample, a thin crysta-

lline peak at5205 cm is detected, superposed to the broad amorphous

band. This peak could be due to a part of the sample which has been

partially recrystallized during the implantation process itself. The

high dose of Arsenic implanted (5.101/cm2) imposed a very high beam

current in order to keep reasonable the time of processing. This ".
high flux induces then an elevation of the temperature of the sample

sufficient to recrystallize a thin thickness of the just amorphized

layer (Ion beam annealing).

After laser annealing, the disappearence of the broad amorphous

band confirms the recrystallization of each sample. Two features

of interest are visible on the spectra presented on Figure 16. A

peak at 520.5 cm" is due to the light scattered by the substrate

, , _ :i :L2 21:'
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through the perturbed layer. Besides this line and shifted towards

the lower frequency region, a broader and slightly asymetric peaks 6

can be observed. The frequency of this peak varyies from 515.5 cm-1

t511.5 cm1 as the implantation dose increases from 5.101 to

16 2

S.10 16 As/cm2

Two processes can explain the presence of this shifted peaks in

the spectra. First, a size effect could be induced by the presence

of microcrystallites in the annealed area' ) .' This effect can be

ruled out, considering the good monocrystalline quality of the sam- -.. ------

ples, determined by Rutherford backs-scattering measurements. This

other effect is the coupling of the continuum of electronic transi-

tions with the discrete phonon state (Fano effect) discussed in

paragraph 5.2. This effect is usually weak in N type semiconductors

but the special processing of these samples (implantations and laser .-

annealing) can lead to a free carriers concentration far above the

saturation and thus to a very large Fano effect.
On Figure 17 are presented the spectra of an 1.5 1016 As/cm2

implanted sample laser annealed before and after a thermal annealing

(600C - I jour). The shift peak has disappeared after the thermal

processing. This thermal processing has released the out of equili-

brium heavily doped state of the sample thus leading to the disapa-

rition of shifted peak of the Raman spectrum.

From the value of the frequency shift, it is possible to calcu-
late the free carriers concentration. The table summarizes the re- ..

sults obtained for 4 samples and compared to the values of concen-

tration measured by resistivity at Strasbourg.

TABLE -

0.5i016 cm-2  1 1016 cm- 2 3 1016cm- 2 5 1016 cm-2

Raman shift 5 5.5 8 9
(cm 1) 0

Raman con- 2
centation 1.6 10 2 10 5.5 102  7.5 1021(cm- )-...,.,

Resistivity 0.37 1021 0.52 1021 1.2 1021 2.25 102"
concintration.
(cm, .. ..__ _.-_.._.
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As it can be seen, the concentration measured by the mean of

Raman scattering gives higher values than the concentration

obtained by electrical measurements. This discrepancy can perhaps
be explained by the hypothesis mode to compute the concentration

from the Raman shift. The model used to achieve this computation

suppose the parabolicity of the band structure (25 ) . For very

heavily doped Silicon, the Fermi level reaches regions where this

parabolic approximation is no longer valid. The flattening of the

bands increase the effective masse of electrons which in turn

increasesthe joint density of states. A complete calculation using

the real shape of the band structure would lowers the free carriers

concentration and thus gives a closer agrement with the values

obtained by electrical measurements..

6. SUB-PICOSECOND SPECTROSCOPY.

The experiments presented in the previous chapte. rere made

after laser annealing. This kind of experiments can characterize

the samples and are thus of interest for devices development.

However, it is not possible to get information on the process of

laser annealing itself from such studies. In order to understand

the laser annealing process, time resolved spectroscopy is required.

Since the real problem is the understanding of the relaxation

processes during the first hundredths of femtoseconds, the labora-

tory has now built a sub-picosecond laser source.

6.1. The sub-picosecond optical source.

The oscillator part of this source is of the "colliding pulse

modelocked" (CPM) type described by C.V. SHANK (263 . A Rodhamine

6G dye laser is continuously pumped by a C.W. Argon laser in a ring

geometry cavity. In the path of the cavity, a thin jet of saturable

absorbant (DODCI) allows the synchronization and the shortening of
the pulses (Fig.18). This geometry automatically involves that the

two pulses travelling in both directions in the cavity, collide on

the absorber where the sum of their intensity is sufficient to reach

the threshold of transmission. Pulse widthes of 90 fs (10 15 s) are

easily achieved in those conditions with this Colliding Pulse Mode -

locking(C.P.M.) oscillator.
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This oscillator is now working and is extensively tested in

order to characterize the mean power, peak power and duration

of the pulses.

The second part of the experimental set up is the amplifier.

The construction of this part is now in progress. This is a four

stages amplifier, each stage being separated from the others by .

absorber jets to provide isolation. The 3 first gain cells are

pumped transversally by a YAG laser. The last stage is pumped

longitudinally by the same laser. At the output, the pulse is

recompressed by a Treacy compressor which comprises two gratings s..

in a substractive mounting. The gain in peak power should be of

the order of 106 •

6.2. Characterization of the source oscillator.

Three diagnostic tools are used to characterize the pulses.

The first one is an avalanche potodiode followed by a sampling

oscilloscope. This measure can only ensure that the laser is

pulsing as the intrinseque pulse duration 3.s much smaller than

the response of the apparatus. The period of recurrence can be

measured and is equal to 14ns which is the time of flight of the

pulses in the cavity.

The spectrum of the pulse is qualitatively checked by sending -""

a small part of the light diffracted by a grating onto a screen.

The lengther the trace on the screen is, the shorter is the pulse

as time and frequency are related through a Fourrier transformation .

The third measure allows an indirect determination of the pulse

duration by means of an autocorrelator. This autocorrelator is

made up of a folded Michelson interferometer where the pulse is

divided into two parts on a semitransparent layer. One of the two

pulses is delayed through a vibrating prism. The two pulses are
then recombined on a doubler crystal of KDP. At the output of the
crystal a beam of ultra-violet light is created when the two pulses S

are overlapping. This light is detected by a photomultiplier and

the signal is sent on the vertical channel of an oscilloscope. A

voltage synchronized with the vibration movement of the prism is

lent on the horizontal channel of the oscilloscope. The net result
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. is the autocorrelation trace of the pulse on the screen of the

scope. The measure of very short time is thus transformed in the

measure of the elongation length of the prism movement. The .

- Figure 19 shows an autocorrelation trace of the oscillator. The
width at half height is about 8,Ofs (femtosecond).

The mean power of the source is easily measured with a power-
meter of the calorimeter type. It has been determined to be

mbmW for a power of the Argon pump laser of 4W.

Knowing the recurrence period, the mean power and the pulse

duration,, it is possible to determine a peak power of 100kW. ,*

7. DISCUSSION AND CONCLUSIONS.

Laser annealing has now a long history and an abundant litera-

ture. The interesting question, which still remains to be answered, ,::-,"

is what are the elementary processes in the interaction of a strong

radiation field with matter.

The process of laser annealing consists of two sets of phenomena.

The first concerns the effect of a dense radiation field on matter .

creating elementary excitation far from equilibrium. The initial

hot plasma redistributes through interactions between carriers and

ultimately thermalizes giving up energy to heavier particles which

are the lattice constituents. The second set of phenomena, of a

completely different nature, concerns the modifications induced to

the solid as a result of the creation of the dense hot plasma. If

the laser pulse is short enough, the e-h density reached corresponds

to an amount of broken covalent bonds which is a significant portion

of the total number of bonds, the crystal becomes fluid even at

T = 0 K. Ultimately, the solid sets in a new phase whose structure

depends on the elementary mechanisms of interaction and organization

of the lattice constituents. We shall discuss successively these

two states as i) direct laser effect and ii) consequences of the

laser action. 0_
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7.1. Direct laser effect.

The incident laser energy is absorbed by electron-hole pairs,. -

creation and-by free carrier excitation. In indirect gap semi-

conductors, electron-hole pairs. are created via indirect absor-

ption processes involving the emission and absorption of phonons. .

Because phonon energies are much smaller than photon energy, the

amount of energy transferred to the lattice during absorption is
negligible in comparison to the total amount absorbed. The rise

of carrier density leads, in turn, to increased free carrier
absorption. The net result is the production of hot-electrons
and holes far from equilibrium which subsequently thermalize with

the set of the carriers and eventually with the lattice. The obser-

vations by Shank et al t27j demonstrate that with short, 90 femto-

seconds optical pulse, an unstable form of highly excited state is

created near the surface which persists for a fraction of picosecond.

For very short impulsion of radiation, from the experiments( 2 1- 2 7)

one perceives clear indications that there are two steps of the
laser action on a crystal well separated in time. In the first

step, the electromagnetic energy transferred from the laser beam

to the solid is retained in the highly excited non-equilibrium

electronic state. In a second step, this energy is transferred to

the lattice.

Recently, a theoretical model(28) is proposed which takes into

account the space time evolution of the plasma during the pulse

in order, o explain the processes in densities higher than 10 2 2 cm- 3

reached in 100fs pulses. The novelty in this model is the argument .-.-.. :-.

that free carrier absorption is dominated by e-h collisions with .":

a characteristic relaxation time T = 3.10- 16s. & _

A different situation is reached with much longer pulses:
31 -3 1T= Ons and a photon absorption rate g , 10 cm s1 : Auger

recombination becomes the dominant recombination mechanism at S S

these densities.

Most of the laser energy is absorbed by the carriers within the

absorption depth. Eventually, these carriers loose their energy

to the lattice, the rise of the lattice temperature then depends
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on the distance they have diffused before substantial phonon

emission occurs. At moderate density, the phonon scattering

time is T X 10- 13s. Screening does not affect the rate of

intervalley phonon emission until Ne % 102 1 cm 3  Because

screening increases the electron-phonon scattering time, .

it not only decreases the rate of phonon emission but also

enhances diffusion. This increases the volume of the region

* in which the energy of the excited carriers is transferred

to the lattice. Owing to the extreme non linearity of the hot

carrier effects, it is impossible to make an accurate estimate t -

of the precise temperature to which the lattice is heated or

to determine the laser power threshold above which melting will

occur.

7.2. Consequences of the laser action. .'...-.:-

The equilibrium observations are clear an amorphous or

glass solid is transformed into crystal under laser action and

a crystal submitted to very short laser irradiation is transfor-

med into amorphous material. An implication of both of these

transformations is that melting preceeds the transition. Another

alternative is that the phase transition is directly induced in ".'.--

the highly excited state.

The effect of a dense plasma on the melting temperature is

itself an interesting problem of solid state theory. This question

has been recently addressed by Bok and Combescot [50 ). It is shown

that in the presence of a dense plasma, the melting temperature

of a solid changes. The melting temperature decreases with increa-
2sing plasma density. For a laser pulse of 1J/cm during 10ns, it .

is considered that e-h plasrfa reaches a steady state in a time

shorter than the laser pulse. Considering the plasma expansion due '. )'
to its high pressure, its collision with phonons and Auger recom- ,"_

.. .
bination, the highest plasma density is of the order i0 21 cm-3  .

This density is nevertheless considered to be sufficient to consi-

derably reduce the melting temperature so that a metallic layer

of liquid Silicon is formed at the surface.." .....

_ ;.". , * ...,.. .
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The role of a high plasma density in laser annealing has been

discussed by Van Vechten et al (5 ) in a quite different way but .' -.

still involving electron-phonon coupling and lattice instability

induced by this interaction. Above a critical carrier density

estimated at 8.1021 cm-3  a second order phase transition occurs.

At this plasma density, the bond charges will be so depleted that - -

they will no longer be able to stabilize the TA phonon modes (2 5 ).

The crystal will no longer resist shearing stresses and will beco-

me fluid. This fluid is distinct from the normal molten phase of

Si the latter being the result of a strictly first order phase , .

transition driven by the atomic motion at high temperatures. The

assumption of Van Vechten is that the plasma is supposed to direc-

tly induce the structural transformation. The energy is retained

in the electronic system instead of being entirely associate with

the atomic motion. As the plasma becomes less dense due to expan-

sion and to transfer of energy to the lattice, the material will

pass back through the second order phase transition at 8.1021 cm 3

and covalent bonding will gradually appear. The material will fina-

lly recrystallize if this process is relatively slow or will soli- -.

dify in the amorphous phase if the process is very fast.

This dense plasma phase could be compared to the highly excited

Silicon which persists for a fraction of a picosecond (2 7 '2 8 ). The

interpretation of the laser action differs nevertheless with regard

to the following step ; it is generally considered that the solid

melts after the initial interaction stage.

In conclusion, few points appear clear today. The laser inter- .....

action with the solids results first in the creation of a highly

excited non equilibrium phase which persists for a fraction of a

picosecond. The question of how this highly excited fluid interac-

tion with the lattice remains still open. Further investigation in "

the very short impulse regime are certainly desirable to clarify ,-: .

the physical processes in laser annealing.

, .. °° ." o ....*

0 "°' °% . •.
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The electrostatic energy per cell for thin slabs of ionic crystals is calculated as a function
of the thickness of the slab, its orientation, and the position of the cell with respect to the
surfaces. The summation method used is simple and quite general to allow for direct appli-
cation to slabs of any structure. The depolarization field associated with slabs of certain
orientations is also calculated and discussed. Numerical results are given for slabs of the
zinc-blende and rocksalt structures.

I. INTRODUCTION tronic charge it necessitates.
In Sec. II we describe the planewise summation

The properties of small particles of solids method employed, a variant of Ewald's method,
(10-500 A) and thin films are sometimes very which assures fast convergence and which is very
different compared to those of the bulk material. simple and quite general in order to allow for direct .
Since the infinite crystal approximation is widely application in any case. It has advantages also over
used, calculation of these properties has to over- the traditional Ewald's method currently used in
come, in most cases, the problem of the presence of lattice-dynamical calculations, for it converges fas-
surfaces. ter and it provides results practically independent of

In particular, lattice-dynamical calculations in the dividing point R.
finite ionic crystals involve the evaluation of slowly In Sec. III we calculate the depolarization field as-
and conditionally converging sums, depending on sociated with certain orientations of the slab as a
the shape of the crystal. Hence quantities such as function of its thickness. Finally in Sec. IV we give
the electrostatic energy per cell, the internal field, and discuss some results for slabs of the zinc-blende -"

and the long-range interaction depend on both the and rocksalt structures.
size and the shape of the finite crystal. "

De Wette and Schacher' discussed these matters
in connection with a planewise summation method II. DEFINITIONS AND METHOD
employed to calculate the internal field in general
dipole lattices. Monkhorst and Schwalm 2 treated As defined in the case of an infinite structure, the

0 the electrostatic energy of two-dimensional periodic Madelung constant is a dimensionless number ex-
charge distributions, where they demonstrate the pressing the electrostatic energy per lattice cell with
cancellation of singularities in the case of a vanish- respect to some unit of length (usually the nearest-
ing dipole moment on the plane of the film and cal- neighbor separation r0). This energy is of course the
culated the Madelung energy of some ionic layers. same for any cell in an infinite structure, but in a

In this paper (paper I) we report on the electro- finite crystal it depends on the position of the cell
static energy per lattice cell in a thin ionic slab, cal- with respect to the surfaces.

" culated as a function of its thickness and of the posi- Hence it is possible to define two "constants," one
tion of the cell with respect to the surfaces, for slabs the average over the whole finite crystal aa, (N), de-
of different orientations in the zinc-blende and rock- pending only on the total number N of cells in the
salt structures. Surface cells show up to 10% higher crystal, and one a(i,N), depending both on the posi-
electrostatic energies in certain orientation, assum- tion of the cell under consideration [l=(l l, 1)]
ing they maintain the same structure as the bulk. with respect to some reference point in the crystal
This fact could be of importance for surface recon- [I=(000)], and the total number N of the cells in it. S

* - struction and other surface phenomena. Moreover, In the case of a slab, N is the number of the cell
the depolarization field associated with certain layers and I runs from (0- , - oc,0) to ( cr, o,N).
orientations may also influence the stability of the Between these two constants the following rela-
surface layer, through the rearrangement of the elec- tion holds:

28 3390 ) 1983 The American Physical Society •
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N on the consequences of using this method.
a,(N) a1,N) , (1) The potential at a point it due to all ions in a

N crystal slab is given by
where the sum extends over the N layers of the crys- N N
tal, and the limit for N--. oo should give the value V(x,N)= .
of the Madelung constant for the infinite crystali 1

The position-dependent "constant" can be defined
as (4)

N N N N r where the sum over I' and 1b runs to infinity. To •
a(l,N)= , ,. , , find a(13,N) one takes the limit/=l'ffJ,= ,e K I(I,O'-ZI,K)l

1*1' K*' r!
a(l3,N)=-- K Jim V(x)(2) a23, ) - K T _- -T(1,') . . .

where , is the fraction of the electronic charge at-
tributed to ion K. -_ , '

In the case of a slab parallel to the plane (hkl) of i(13,K)-.
the crystal, we can always choose such a unit cell
that the primitive translation vectors a1 and i 2 lie (5)

on the plane (hkl) and i 3 lies out of it. The thick- where j(1 3,K)=mi(O,O,1 3 ,K).
ness of the slab is measured by the number N of Since by assumption the vectors ii and a2 lie on | .
cells superimposed on the direction perpendicular to the plane of the slab, we can write
the plane (hkl). Since the unit cell chosen that way
may be a multiple one, the summation over K has to I i(I ,1; ,1 ,K')- j 2
be performed over all atoms in that cell.

The structure is considered as two dimensional 2I X(1t'z )-'Xl 3K'--xf 2

and a two-dimensional reciprocal lattice is associat- 12
ed with it, defined by the vectors + I ((,i')-1 12 (6)

i 2 Xai1 X f2 ) X (i i2) X il, where 11 and i. designate, respectively, the com-
b 2  = ponents of the vectors parallel and perpendicular to
Ia 1 Xi 2  iaXi 21 the plane (hkl).

We note also that since the structure is infinite in With the use of relation (6) and the integral repre- -

two dimensions, a(l,N) becomes a function of the sentation of I Ix,
index 13, which gives the position of the cell with 1 2 e-
respect to the surfaces of the slab. - exp(x2p2)dp , (7)

To evaluate the right-hand side of Eq. (2) we use a
variant of Ewald's method. We will comment later Eq. (4) becomes

V(x)--- _f- I exp[-I 1(I'3,K')- il
2p2 ]  exp[- -i(l',12)+xII(t3 ,K)-lI 2p2 ]dp . (8)

The sum over I1'2 in the above expression is a periodic function in two dimensions and can be expanded in . . .
Fourier series,

- sp A,

where s, = il x i- I and Ph Ih 2 ) is a vector of the two-dimensional reciprocal lattice, defined by relations
(3).

To keep in close analogy with Ewald's method, one should split the integral in Eq. (8), into two integrals
over the intervals (0,R) and (R, oo ) using both sides of relation (9). This leads to an expression containing er-
ror functions which converges rapidly, but its numerical value depends on the dividing point R more strongly .
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than if unnecessary splitting is avoided.
Since we are going to take the limit of V(x) for i-' 3(1

3 ,K) (Eq. (5)], the first exponent in Eq. (8) will vanish
in the term l ,K'=13K. It will vanish also for 1'3 =13 and '=K"=/K for all ions K" lying on the plane (hkl).
Hence we separate out these terms ('s =13 and K'=K") and we use only the right-hand side of relation (9) in all S
terms of Eq. (8) except the last ones, for which the integral has to be split and use of both sides of relation (9)
has to be made. We get

V~,N= V' N N N N K
V(x,N )= - 2 , exp[ - jCI(l','I 12zl2-~,h)ZO]i: 'i }

Sa I' 13=1 K'=1 K"=I h .f 0
i13

~~~Xexpj -27ri (h j,h2)-[3g0(l1,K') -ill] .. " .

+ v '  fR exp[ - i(Pjji ,1 + ,-1(l,K")-- 
- I ,( 3,K")- 3± I pdp .

2+V- R , 2 2__

Sa K" A1
'. 2 .o exp[ --,r (hh)'- 1(13,K") - 1 .p

Xe"ph-2h2  Y.h. .2)'1 (10

where K" runs over all ions in the unit cell lying on the same plane (hklh with ion K (K included).
Taking the limit in Eq. (5) using the function

H-(x)- erfc(x)= -e- dt, (11)

the result 3  .
lim RH(R -i(13,K)) t (12)"""

and V(x,N) from Eq. (10), Eq. (5) becomes

2 0 2

O *Ki; * '" "."'''

'exp[-2ri (h,h2 )'1(13,K,l 3;,K')j -

+ " R ,, (R I'(~ " "'"

+ s K " ' H(rr ,(h 1(hj ,/e i h2).x(K,K")]- 2R T(I,,N)
Rs. K"r

(13)
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where the primed summation signs mean that terms with 1 ,11 for K"=K or (hlh2)=(00) have to be omitted
and T(13,N) is just the sum of the (hlh 2)=(00) terms given by

fo,(14)
.T(13,N)= 2 . Z I ~,f~exP[-Ix(13 ,,l,KI2P2 - p +. 2v f R t.. .

s h, t, f un Pct o t

The function T(13,N) diverges forp equal to zero. Its limit for p-+ 0 is

T(3, ) . - 2 -  . , . ',I1'(13,K,1',K<')I-- +. 0l5a).,-.-,.,.,.
So N) V i9,e II - I (15a

Sa l3 13 se " K"e

13 #13

since

'3 13 J
due to the neutrality of the unit cell.

Evaluating the remaining integral in Eq. (13) and using the result (1 5a) we find_ .

ro N N N N

f(13,N)='- t .I, [ - 2r I p Y(hl,h2)I I
'3 13-- l =,l hl1h 2 1 Thlk)l
I13:013

K oK

rowr
+ --. ,, ' H('l y(h,h 2 )I /R)exp-2riy(ht,h2)' (K,K")]

2Rs. o ' hJ,A 2

_ ' (16) ..- 7

s. e . . + . .

where we dropped the subscript 11 as of no importance since the vector (h,,k) has no component perpendic-
ular to the plane of the slab, and where we also rduced the first sum in (I5a) since for the pair of terms with
K= K, K'= K and Kc= rK, K'= K, one has _ 0

I T 1(l 3,i,,1;,',) I + I Ti(l 3,xr,1,K 1 ) 1 =2 I(1 ,1'3  ) 1 (17)

for all I'3 13, and hence the sum over K and or' is zero for all 1 -*13 due to the neutrality of the unit cell.
Equation (16) is our final result. In this expression the sums of Hzx) functions converge rapidly and so does

the first sum provided that J X£(/,Kl,K') j is not too small, the slowest convergence occurring when 1 =131
For N-+ cc and 13 well away from the surface a(l3 , c ) will give the Madelung constant only if the depolariza- _ _
tion field is zero as we will show in the next paragraph. . .. . :

II. THE DEPOLARIZATION FIELD " " - ."'.

The function V(x,N) defined by Eq. (4) gives the potential at a point i of the space due to all ions in the
slab. Its values at a point P (1p) outside the slab is given by .
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V(xp,N)= Vf(xp,N)+ V(xp,N), (17a)

where

N N exp[-21rTY(h,,h 2) j-i (l'3,K')-9pI]

-9 $i j' ,i'=I 1,A2  I Y(h,,h 2 ),

• ×~~~expj -21riy(h jh2)'[-£ll3K) l] (Io OK-.. ON. -" - "-

sd X 34 N 9 ,e[Yl(Knl-fj(K')l'V 0, (22) -''=

3 ,p.e1 ..

(1 7c) which is locally modified by the difference of the

as obtained by using only the form of the first stim corresponding terms (17b) for local fluctuations.
in Eq. (10) and taking the limit of the first integral Defining a dipole moment for the unit cell by
in Eq. (14). (

The first term, Vf(xp,N), in Eq. (17a) represents ' .ftjI-j..-:-.(23
the local fluctuations of the potential and it goes to ',,

zero for a point P very distant from the slab. The
second term, V,(xp,N), represents a constant poten- the potential difference AV, of Eq. (22) becomes
tial and it is independent of the position of the point (24
P (considered on the same side of the slab). This can AV,=4NP, "o. (24)
be easily shown by taking the charge fraction , of
a particular ion K1 to be The distance between the two surfaces of the slab is

* I ,. (18) L=(N-l)a1 +d, (25)

H, where aI = 3'a3"I is the thickness of one unit cell
and d is the distance of the outermost planes of ions

Then, assuming a positive xpj and a unit vector belonging to the same cell (Fig. 1).V=iiXi 2 /tii Xi 2 I, V(xb,N) from Eq. (17c) Assuming that the potential V [Eq. (24)] drops
becomes uniformly across the thickness of the slab, the fol

Ve(x,N).V(+ o,N)=NV(+,l), (19) lowing field is created:

where 1 M(N)= 4v! Na1  (p.Vo)Vo, (26)v, (N - Dl a j+ d'"" '- -":

e( +,l) e 2-r ,[ (Ix)_X(t,)].V where v. =s,.a is the volume of the unit cell.

(20) w come

is the potential created on the one side of a set of
parallel uniform charged planes through the posi-
tiops of the ions in a slab of one-unit-cell thickness.

Considering now the potential at a point P' on the
other side of the slab, one finds, apart from the term
describing the local fluctuations, a constant term -7

V-(x,,N)=V(-oo,N)=-V(+oo,N). (21)

Hence there is a constant potential difference AV FIG. I. Schematic representation of a slab consisting
between the two surfaces of the slab, given by of N one-cell layers.
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Increasing the thickness of the slab and taking the 2v Na ( . (29
limit of Eq. (26) for N--- cc, we find .- (N-l)a1 +d 0

E1 f -) "( ,VoKo (27) which is a negative quantity or zero if P, lies on the
Va plane of the slab. The factor depending on N goes

Hence the presence of surfaces parallel to charged to unity as N-* cc, and in the limit we get
planes of the crystal produces a macroscopic field 2'r . (30)
Ej(oo) perpendicular to the surfaces, and conse- W,(00)- - (P" O)2(

quently the ions are no longer under the same condi- A

tions as in the infinite crystal, where no surfaces are Hence the value of the electrostatic energy per unit
present.3  cell, obtained by Eq. (16) for N--, oo and 13 well in-

To make the slab equivalent from that point of side the slab, is higher than that given by the
view, with an infinite crystal without surfaces, one Madelung constant, by W,( c),

has to apply an external field E(N) equal in a l(
strength and opposite in direction for the total mac- aM =im a(N/2,N)+ro W() , (311
roscopic field in the slab to be zero. By doing that, where we multiply W( o) by r0, the nearest-
the energy per cell changes by the amount neighbor distance in order to be consistant with the

W(N)= I ,Vex(K,N), (28) other terms.

K IV. RESULTS AND DISCUSSION

where Vex(K,N) is the potential at ion site K due to
the externally applied field. Using a variant of the Ewald's summation

Using again Eqs. (18) and (23) we find for the method we calculated the Coulomb energy per unit
change of the energy per cell .~~ocksalt - ". '

W,(N)= +ECx(N -P, Roc, -. ,.

.0.70 - .

-0.90 Zinc blende 1 "

. . 00 *O~O~C-,J.0.80

-, o0 .... 0)
-1.20 -1.30

-1.30 -1 O0

-(110)". - -' ..-

-1 .4 0 , , _ ,I ,Z - 1 .5 0. . . . .
.. . . .. .. 2, 17 2:..

-1.50 4. -1.60

-1. o -1.70o ) '

(110) 
aM

- 1.7 0 - 1.8 0 . . .

1 . .10 15 10

Thickness Thickness
(Number of cells) (Number of cells)

FIG. 2. Electrostatic energy per cell for the central FIG. 3. Electrostatic energy per cell for the central ,.
layer, as a function of the thickness of the slab, for slabs layer, as a function of the thickness of the slab, for slabs
of the zinc-blende structure oriented parallel to (100), of the rock-salt structure oriented parallel to (100), (11 ),.
(I IT), and (110) planes. and (110) planes. L-.
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TABLE I. Electrostatic energy per cell for central cells of thin slabs.

Number Central
of cell a(NI2,N) for zinc blendez a(NI2,N) for rocksalt'

layers ( (N/2) (100) (110) (1iT) (100) (110) (11o)

1 1 0.96795 1.34448 1.35832 1.61554 1.33129 0.78646
2 1 0.96333 1.50820 1.38484 1.68232 1.57097 0.74311
3 2 0.95871 1.67192 1.41136 1.74910 1.81064 0.69975
4 2 0.95829 1.65347 1.41135 1.74832 1.77588 0.70006
5 3 0.95788 1.63501 1.41134 1.74754 1.74112 0.70037
6 3 0.95788 1.63670 1.41134 1.74755 1.74470 0.70037
7 4 0.95789 1.63838 1.74756 1.74828
8 4 0.95789 1.63821 1.74756 1.74788
9 5 1.63803 1.74749

10 5 1.63805 1.74753

'The minus sign is omitted. -"7t "

cell of thin slabs of the zinc-blende and tocksalt previously described. The most rapid convergence
structures for cells of the central layer (or layers of a(N12,N) to its limiting value is observed for
when N is e In), in Fig 2 we show the dependence slabs of (lIT) orientation in both structures, and the
of a(N/2,N) on N for thin slabs of the zinc-blende slowest is for slabs oriented parallel to (110) planes. : "
structure oriented parallel to (100), (l IT), and (110) In Table II we give the values of the electrostatic
planes. For each orientation, a(N/2,N) converges energy per cell a(13,N) for cells at different dis- ,..:..:.

very rapidly to a different limit. The only limit tances from the surface for a thin slab of the zinc-
which coincides with the Madelung constant blende structure, oriented parallel to (100), (110),
(am = 1.63806) of an infinite crystal is that for the and (II1) planes. It can be seen that the limiting
slab par. lid to (110) planes since these planes are value is reached within even the second layer for the '

through both positive and negative ions and hence 111) slab, while for the (110) slab it is reached at a
neutral. The limit for a slab parallel to (111) planes deeper layer. ..*

is higher by r/83, which is exactly the energy of In Fig. 4 we give the depedence of the electrostat-
the unit cell given by Eq. (30) (multiplied by r0 ). In ic energy per cell [ro W,(N), Eq. (29)] due to a mac-
the case of the slab parallel to (100) planes the limit roscopic field equal in strength and opposite in
is higher by irv'3 /8 in accordance with Eq. (30). In direction to the field created by the slab of N layers. .--. ,
both of the latter cases the infinite planes forming Among the cases considered here, such a field is
the slab are through only one kind of ion (positive or created ty the (111) and (100) slabs of the zinc-
negative) and hence there is a net dipole moment blende structure and by the (11 T) slab of rocksalt "
perpendicular to the plane of the slab. structure. The corresponding limiting values are 0

A common feature to all three cases is that reached very slowly but the convergence is the same
a(N/2,N) tends to its limiting value through an ex- -

tremum, a maximum in the case of the (100) slab
and a minimum in the cases of (lIT) and (110) slabs, TABLE II. Electrostatic energy per cell, in a slab of 20 ;"... b ,'

in an oscillatory way. For the (110) slab the layers, for layers in different distances from the surface.
minimum is most pronounced, lying more than 2% Layer
lower than the limiting value am. from

In Fig. 3 the dependence of a(N/2,N) on N is surface a(13,20) for zinc blende'
shown for thin slabs of the rocksalt structure orient- (13) (100) (110) (111) --. .

ed parallel to (100), (111), and (110) planes. In both, " .---.
(100) and (110) cases, a(N/2,N) tends to the value 0 0.96292 1.49127 1.38482 -

of the Madelung constant (1.747 56) since both 1 0.95830 1.65499 1.41134

these planes are neutral, through a minimum which 2 0.95789 1.63654 1.41134. .-

is almost 4% lower than the limiting value for the 30.95789 1.63822 1.41134
S(110) slab. For slabs parallel to (IIIT) planes the lim- 4 1.63805 :.; ..

it is higher by ft/3 in accordance with Eq. (30). 65 1.638076":.-.-..
In Table I we summarize the numerical results for 6 1.63806

the six slabs of different orientations and structures 'The minus sign is omitted.
_ 'q"--,
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lattice is in exact agreement with their correspond-
0. 0 ing result (namely the value -1.61554), The in-

crease of the energy, as their layer is separated into
-o00 two oppositely charged sheets, is due to the same

" , .. reason we already explained and the term E 3 in their

z inc bende energy of the layer is equivalent to our result of Eq.
040. ,(28).

* A final remark concerns their suggestion to treat
- the electrostatic energy of systems of point charges I .

S. in terms of coefficients 0, of the , products.
"-%ooo). For diatomic ionic crystals there is only one such . . -

3r .- - coefficient, the Madelung constant itself (since
rocksalt -. o 42=1 -,)" For crystals with more atoms per unit

.00o :cell, with at least three different , such an expres-
-1.6 sion will save considerable computation time and

will point out relations between structure factors in
.t20- structures and superstructures. We have found that

-2.0 the Madelung constant of the chalcopyrite structure
-- 2 (which is a superstructure of the zinc blende) can be

-. 1 expressed as --

1 5 10 15 20 g2
a~h = 2.139 25( 1 e2) -2.273 78g , (32)

Thickness (number of cells)
FIG. 4. Electrostatic energy of a cell in the macroscop- where g, and g2 are the two cation charge fractions.

ic field of the slab as a function of its thickness, for (1 IT) For 91=9 2=1, ach equals 4 times the Madelung
and (100) slabs of the zinc-blende structure (left-hand constant of the zinc-blende structure, since the unit
scale) and (I IT) slab of the rocksalt structure (right-hand cell for the ideal chalcopyrite is 4 times larger.
scale). After this paper was submitted for publication, V.

V. Avilov* proposed formulas to calculate the elec-
trostatic energy of planar lattices. Apart from an

for the (100) zinc-blende and the (111) rocksalt obvious typing error, the potential of a planar lattice
slabs. For slabs with 50-70 layers the calculated of charges at a distance Iz from its plane,
values are within 1% of their limits, represented as a Fourier series in the plane, is given |

It is worthwhile to note that although for N-+ oo in this paper as exactly the same as in our calcula-
Eq. (2) is the definition of the Madelung constant, tions. In our opinion, the uniform background
its limit for N-- oo depends on the orientatiun of charge distribution of opposite sign assumed to re-
the slab. This is due to the fact that the series in the move the divergence of the sum results in an unreal-
right-hand side of Eq. (2) is not absolutely conver- istic picture for a slab or an infinite crystal with two
gent and hence its limit depends on the way of sum- parallel surfaces. It does in fact implicitly compen- -At
mation. Any method summing first on infinite sate for the depolarization field through a multilayer
planes cannot avoid creating a constant potential (or a two-layer) sandwich of uniform charge distri-
outside the planes and hence a depolarization field if butions of opposite polarity, but without its source
the dipole moment of the cell has a nonzero com- and importance being demonstrated.
ponent perpendicular to the plane of summation.

Monkhorst and Schwalm" calculated the electro- One of us (G.K.) thanks Dr. K. Kunc and Dr. M.
static energy of a layer of the NaCI structure paral- Kanehisa for many helpful discussions. This
let to the (100) plane in different distorted configu- research was supported by Direction des Recherches
rations. Our result for one layer of the undistorted Etudes et Technique (DRET) Contract No. 79/1101. -. -.

"Permanent address: First Laboratory of Physics, Univer- 1729 (1981).
sity of Thessaloniki, Thessaloniki, Greece. 3M. Born and K. Huang, Dynamical Theory of Crystal

'F. W. de Wette and G. E. Schacher, Phys. Rev. L3, Lattices (Oxford University Press, New York, 1968), see
A78 (1965). Appendix II.

2H. J. Monkhorst and W. A. Schwalm, Phys. Rev. B 23, 4V. V. Avilov, Solid State Commun. 41, 555 (1982).
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Errata

Erratum: Lattice dynamics of thin ionic slabs. 1. The electrostatic energy
[Phys. Rev. B 28, 3390 (1983)1

G. Kanellis, J. F. Morhange, and M. Balkanski

Please make the following changes to our paper.
(1) Page 3391, in Eq. (2), instead of

11dt KOK'~

write
N

T
K

(2) Page 3391, in Eqs. (4) and (8), the sum over Kc' runs from 110o the number of ions in the unit cell (not to N).-
(3) Page 3392. in the first line of Eqs. (10) and (13), instead of

Si iKi .

131 13 .'-1 "-TI

write

2v N

'3-1 K

(4) Page 3393, in the first line of the text, instead of ... terms with 1,12fr.. rt .. trswt I.~ 00 o

(5) Page 3393, in Eqs. (14), (15a), and (15b), instead of

13 13 K £

write
N

(6) Page 3393, in the first line of Eq. (16), instead of
N N N N

3-1 K'-' K- h1h2

1'13 1*l

write

II Kh 1.N2  *:.:.

29 6372 ~
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Lattice dynamics of thin ionic slabs. II. The long-range forces .

G. Kanellis,* J. F. Morhange, and M. Balkanski
Laboratoire de Physique des Solides de l'LUniversiti Pierre et Marie Curie associ au Central National

de la Recherche Scientifique, 4 Place Jussieu, F-75230 Paris Cedex 05, France
(Received 15 March 1982; revised manuscript received I I March 1983) --

The Coulomb interaction is calculated for thin ionic slabs of any structure and orienta-
tion. For ions lying on different planes, parallel to the plane of the slab, the direct-space
double sum is transformed into a rapidly converging double sum in reciprocal space only, " "
while for ions lying on the same plane, a two-dimensional version of Ewald's method is .7
used. Finally we commeut on the macroscopic field associated with long-wavelength vibra-
tion-i of an infinite lattice on the basis of a two-dimensional summation method-

I. INTRODUCTION calculated the electrostatic energy per cell in thin
ionic slabs. We believe the method we propose here,

i ie s great interest in the physics of surfaces a variant of Ewald's method, is quite general,
aiid thin-rilm phenomena and much attention has straightforward, and simple, and hence more con-

, .J ,Day i to the study of surface- localized vibra- venient to use. ,
i aI modes of crystals. To investigate these modes Finally we comment on the macroscopic field as-
ii, !i Aabs of ionic crystals by direct lattice- sociated with long-wavelength vibrations of an in-
1.I, aii ical calculations, one needs to zalculate the finite lattice. In fact a planewise (two-dimensional)

,.-,ne interaction between plane lattices. This summation method for the Coulomb interactions . -

task involves the evaluation of dipole lattice sums can never give the formal results of Ewald's method --

\i, an infinite number of terms, in two dimensions, for the macroscopic field without additional as- .-

Since ;tcice sums in general are conditionally con- sumptions concerning the effect due to the presence . -

verged, two-dimensional summation methods in of surfaces.
t k s imply conditions leading to different re-

t, w ich have to be interpreted. I1. COULOMB INTERACTIONS
Ni 1 'oer and de Wettet and de Wette and Schach- BETWEEN IONS

t. .1Stsed these matters when calculating the . .
iI i-c, i,11 field in dipole lattices and they pointed out We consider, as in paper I, a crystal slab consist-
hi,,. the sums are influenced by the orientation of ing of N one-cell layers, parallel to the (hkl) plane of
t1 , ancs on which the summation is performed the crystal structure. By appropriate choice of the

i ,,.-spect to the dipole direction. They propose a unit cell, the primitive translation vectors ai and -2
,;anewisc summation method which can be used to can be taken to lie on the (hkl) plane, while S lies

,31LI0hie the long-range interaction in thin slabs, but out of it. The slab is considered as a two- .
they 6)o not derive expressions for such a case. dimensional periodic structure and a two-

i tailed calculations on finite ionic slabs have dimensional reciprocal lattice is associated with it.
twxm arried out by Tong and Maradudin? These defined by the vectors bI and b( [Eq. (3) of paper

authors treated in detail the long-range interaction
a the crie of a slab of the rocksalt structure parallel The field at a point ,JC due to all point dipoles "

'fie (1(Ku plane. using a method proposed by 1(I',K') at lattice sites -(l',K'), '=(IW, ;, is -

NMaclkenzie. The same case has also been treated by given by
i -$k ;: ._A Fir-ov4 and by Jones and Fuchs for re- a2

L:,r(-d and unretarded interaction. but on different Ea( (

In ilit, .aper we derivw explicit cxpressions for the r . ._
.,iplirg coefficients due to unretarded kong-range .. ex r_ , (1
fin 'c, btvween the plane latticec it. an ionic slab, '. -(l,')-

h'c'6er its structure and orientation. This is done
foll .ang a procedure similar to the one presented in where a,l- (1,2,3) number the axis of some Carte-
,le t,, ccling paper, referred to as paper T, where we sian coordinate system Oxtx 2x 3 , K' runs over all

28 3398 1983 The American Physical Society
.5-".
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ions in the unit cell, I' runs over all unit cells from periodic structure defined by the vectors
(-ao,-oo,O) to (oo,oo,N), and YT is a two- (i,,iNi). To evaluate the sum over I~' on the
dimensional wave vector, right-hand side of Eq. (1) we proceed the same way

We note that the index 13 labels the one-unit-cell as in evaluating the double sums in paper I.
layers of the slab. Hence the index (13,Kc) labels the Using the integral representation of 1Ilk [Eq. (7)
atoms in the long unit cell of the two-dimensional of paper I] and again setting

I i(',K') - i lj , )+x11j(1;,K')-X11 32+ 1 ' 'K) - il (2) S-

where IIand I designate the components of the vectors parallel and perpendicular to the plane (hkl), respec-
tively, relation (1) becomes

E.fl I p(I;,c') a2 f0exp - I11(I' ,K'-iI 2p2 +21riy-i]
13,"K (3 aXpa~ 0

X -L- expl - I ill, X2' )+i 1('3sc'-ill (3)

since the vector Ylies on the plane of the slab.
The sum over i ,I' on the right-hand side of Eq. (3) is a periodic function in two dimensions and can be ex-

panded in Fourier series

22

2 XxI1IYh, 2)+Y 2 p-ffYh 2 )T[ 11(13 ,K')-XII]j , (4)
so h1,h2

where s.= I il Xi 2 I and Y(h 1,h2) is a vector of the ed).
two-dimensional reciprocal lattice. Hence we can consider the field E,( 00 as being 5

Here again, as explained in paper I, one can intro- the sum of two components,
duce a dividing point R on the p axis and evaluate
the integral in Eq. (3) separately over the interval E.(_i)=E.1 1"(i )+E.(2(-i) (5)
(0,R) using the right-hand side of relation (4) and
over the interval (R,oo) keeping the integrand as it where E."'(i) is the field at point xC due to all ions
is. outside the plane (h through that point and

Splitting the integral in Eq. (3) is necessary only if E.(i is the field at the same point due to all ions
ijl K) ijI=0 for some (I'3,Kc'), i.e., if the vec- lying on the plane (hkl). We distinguish the follow-

tor j(l',K')-i lies entirely on the plane (hkl) ing two case-:
through the ion (1I3,K'). Case A: I i1 (i'j,K')-i 1 :P60- Since we are later

In calculating the Coulomb interaction between going to replace i by i(I 3 ,K), this will be the caseAN
ions, one is interested in the field at ion sites jC(l 3,K). for (l',,K')#( 3,K") as already indicated. We
It will happen then to be I i 1(lW '- 1 I,)= proceed by evaluating the integral in Eq. (3), using
for l1 ,K' ==3,K', where K" labels all ions of the unit only the right-hand side of relation (4). Then ,:

cell on the same (hkl) plane through ion K (K includ- for E("( ) we have .-

E~'~(x) =a
2  1I.

p aX~aX0 S'
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Before carrying out the differentiation in Eq. (6), we note that the unit vector Vo0 perpendicular to the plane
(hkl) is, by the assumption for the choice of the unit cell,

vo= -cosa 0o +cOSPYo2+cosyx43, (7)

with respect to the coordinate system OxIx 2x 3.
Hence

Ox., ll,K')- gl =sg [xl,K')' oV-_iVO] -sscosa , (8a)
axaaa

where

+ 1 if i(;,K')>'7o> x '(Vo
s -1 if ((8x')<-b)

* and

I i 1 (l;,K')-ij =0. (8c)xax t '

Carrying out the differentiation and evaluating the derivatives for -= [(13,K), we get
E,"(13K) I E.pp('3 ,K')Qa(1 3,K;1,K'j Y)exp[21riY'(1 3,K)J , (9)

13,K', 13,JC'

where
Qa0(l3,K;i;K'] ,1= n y. [Y(h],h 2 )+YaItYO(h,2)+Y,] + I Y(h,h 2)+Y I cosacos" '

S0  I Y(h1,h2)h-Y I

+ is,) IYa( h,h 2 )+ya]cos+[y(hl,h2)+yPIcostaI

Xexp[ -2T ]Y(h,,h 2)+Y1 I i 1(13,K,13,K') 1-2riY(h,,h 2)'-i(1 3 ,K,1;,K')].

(10)
In the last equation we dropped the index l as of no importance, since the vector Y(h 1,h2) lies on the plane of
the slab.

It is worthwhile noticing that the above expression for Qa8 (13,K;I'3 ,K' Y) is a regular function of I Y I hav-
ing a well-defined limit for I -. 0. This can be easily verified by separating the (hh 2)=(00) terms on the
right-hand side of Eq. (10). Their sum tends always to zero for Y-.0O regardless of the direction of the vector

*Case B: I i(1 (l',K)-- 1 j I-=. This will be the case for it=9(3,K) and (IX)=( 3 ,K") where K" runs over
all ions of the unit cell lying on the same (hkl) plane with ion A. In this case we split the integral in Eq. (3)
into two integrals over the intervals (0,R) and (R, oo) using both sides of relation (4). We get for Ea(i),

( [RtIPP(13,K") a Rj H(R i( 1 ,l,1 3 ,x")- I )exp[21riV.i(I ,I 2 ,k')'
x,. 5 axaaxs 1,.i

Rsa h, h2

wexp21ri[Y(h,h2)+Y't- 2i(h,h2'o(13,n

where we used the function ._'_



28 LATTICE DYNAMICS OF THIN IONIC SLABS. II.... 3401

.--2 1 f -"t12 •i:i7}']

H(x)= fe- dt (12)

to express both integrals.
The function H(x) diverges for x=0. Hence the term 11'2= (00) on the right-hand side of Eq. (11) will

diverge for K"=K. Performing the differentiation and replacing i by i(13,K) we get for E.Z( X),

E )(2)'iMp )P(13,K")Q(13,K;13,Kliy)+Q.,9(1 3;K;13,K ) ]exp[21rai-yX(13,K)], (13)

where

Q.0(13,K;13,K" I Y)=R 3 H_ Hp(R I l(K,I',l,K") I )exp[2riyi(Kl',,1,K")]

41T2
r [.a(hl,h2)+Y.][Y (hl,h2)+yp]H(irI (h,,h2)+y I IR)

h1'h 2

Xexp[21ri(hj,h 2 )'i(K",K)J, (14)

Qap( 1 3,K;l3,K Y) is the diverged term, to be evaluated, and

a
2H.Ol I1 )=- H( H II. (15) ---::- :]i::

axaax-

To find Q.(13,K;13,K I Y) one has to subtract from the right-hand side of Eq. ( 11) the contribution in the po-.,

tential at ion site (13,K) due to the ion (13,K) itself. . . .-

This is done by taking the limit

im H((LRr V0xaax,) -

-Tuim H(R I (0,o,,)-r ) Ii(13,K)- I

_,lim axx, 1 ) v' exp(-t 2 )dt = (16)
T xapV-r0 J vl

where 8p is Kronecker's 8. By naming the function Relation (1 7a) can be verified by inspection from 0 0
in the square brackets of Eq. (16) as Ho(x) and Eq. (10) and by calculating Hp(x) for Eq. (14),
considering the above-found result as its limit for Ha(x) being also symmetric in xa,xp. Relation
x---*O, we can retain Eq. (14) as the general formal (17b) is also true for Eq. (10) because of the condi-
expression for QP(13,K;13,K" I -) bearing in mind tion (8b) while for Eq. (14) the summation indices
that in the case of K=K", one has to replace in the I ,1j have to be replaced by -I, -Ij. Finally, re
term (1112)=(00) the function Hap(x) by Hop(x). lation (17c) is verified for both Eqs. (10) and (14) by

We note again that the right-hand side of Eq. (14) replacing the indices h i,h 2 by -h 1,-h 2 .
is a regular function of I I. The sum of the
h Ih2 =(00) terms goes to zero for I Y I0, what- III. ON THE MACROSCOPIC FIELD
ever the direction of the vector Y is.

For the coefficients Qa9(13 ,K;l'3,K" IY) given by In the three-dimensional case the macroscopic
Eqs. (10) and (14), the following symmetry relations field is produced by the infinite charged planes,
hold: through the positions of the vibrating ions, perpen-

dicular to the direction of the wave vector 4, for ..
QaP(13,#;IK' I )=Q ( 3,K;I,K' I Y) (17a) long-wavelength vibrations (4-40u. Its value turns

Qa,-'3, I Y)=Q5:0('';3,K I Y) (17b) out to be equal to a nonregular, for the 6-0 term,
of the sum of the (h 1h2h 3 )=(000) terms in the ex-

QI(13,Ki'3,K'l Y)=Q 5 (13, ;l,'i -Y) . (17c) pression for the exciting field at a dipole site.6 It is .
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given by is created between its two free surfaces.
We would like to emphasize at this point that the

* E, 4w . --.. q 'j (K), (18) interaction due to electrostatic potentials calculated - q .
.I q I 4 I in a preceding paragraph is correct and accurate as

where vis the volume of the unit cell and is far as the slab is considered to be taken out of an in-the dispo e ome ofte wit ce n K finite structure. Moreover, no question arises for ':: " "'" "''tedipole moment associated with the ion K.
Inthprecding.aragrph ehave sthe zero-wave-vector limit perpendicular to theIn the preceding paragraph we haeshown that

such a term exists neither in Eq. (8) nor in Eq. (1 l) plane of the slab, since no periodic boundary condi-
for the exciting field. Since the macroscopic field, tion has been imposed along that direction. What ...

according to Eq. (18), is on the same direction with we are going to show is that the well-known macro-
vector 4, we have to conclude that there is not a scopic field in the infinite-crystal case is due to in-

macroscopic field lying on the plane of the slab. finite distant planes (missing in the case of a slab) - -

This is of course what one should expect, since in and moreover how this field could be taken into ac-

the present case there exist no infinite oscillating count especially in the case where the surfaces of the

charged planes perpendicular to the plane of the slab are not free. --
infinite in To derive an appropriate expression for the con-

stant potential difference AV, between the two sur-one dimension. Consequently in slab-shaped crys- faces of the slab, we recall Eq. (17c) of paper I for
tals, longitudinal and transverse phonons propagated constant term Vc of the potential at a point
on the plane of the slab must be of the same fre-

quency, as far as no displacements perpendicular to P f,) outside the slab,
the plane of the slab are involved. 2fNN Nv -- A.-

On the other hand, there are infinite oscillating ( - . I i1 (I'3 , ')---,. .
charged planes parallel to the plane of the slab.
Hence a macroscopic field must appear perpendicu- (1 9a)
lar to that plane due to vibrations along this direc-
tion. To calculate that field we consider the poten- where 9. is the fraction of the electronic charge at-
tial distribution inside the slab (Fig. 1). We have tributed to ion K'. At a point P'(li) on the other
shown in paper I [Eq. (22)] that, depending on the side of the slab, the same term of the potential will
orientation, a constant potential difference AV (N) be

2fN NV (xp.,, N)= -s,  ,Y , ,t ,,) p[.-:.: .
f=1 2 3 4 I;=

d
S .- ,

1aI3 =1w=
K" 2 1 2 1 2 1 2." ""'

(19b)
1t- AV,(N) Assuming I pI > Ixl(1 3 ,K'); and j,- ., ,

we find for the constant potential difference

---- " I ., AV,(N)= V (x,,,N)- V,(x,,,N)

0-- X ., (20) ,
,S a I .-. ' -.

We note that the above expression is completely
A . - AVc (m) equivalent to the one given by Eq. (22) of paper I.

I t-- - AV,(N) If we consider the slab as a part in the infinite
2 Icrystal, the above potential difference is almost com-

- d -- pensated by the result of the crystal, resulting in the

--L az regular potential distribution of the infinite struc-
ture. Instead, we will consider the slab free and an

FIG. I. Potential distribution in a thin slab. (1) Static external potential to be applied, equal in magnitude
potential created by the charged planes, (2) external poten- and opposite in sign, to the one given by Eq. (20),
tial compensating the former one, (3) final distribution re- which we assume to drop uniformly across the slab.
suiting from the superposition of (1) and (2), (4) external The resulting potential distribution is illustrated in •
potentiai when the slab is considered as part of an infinite Fig. 1 for a slab of the zinc-blende structure, parallel
structure, (5) potential distribution in an infinite crystal, to the ( lIT) direction, consisting of four layers.
i.e., superposition of (1) and (4). In the general case where the unit cell may con-
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tain many atoms we have to assume that these L =[-(NK.)-i(I,Kj)]'¢o. (21)
atoms are distributed over several parallel (hk);
planes. Let us denote the position vector of an atom
lying on the first surface plane by ( q) and the po- Having applied the above-mentioned external po-
sition vector of an atom lying on the other surface tential, the total potential at ion site (13K), apart
plane of the slab by (NK,). Then its thickness will from the fluctuating term already encountered in :-:.-."-
begivenby Eq. (6) for =0, will be

13 N N

41" 3 ir ' 41r [-(l' 3 ,K')-(,K)]'iO N N
2;2;'([xl3,K),K)IO )H7]*+ g e*w/,H , (22)so |' = s ' [ (N ,K .)- ( ,Kj) ' 0 , ,,1 , _I_ ]:: .!:_ _ . •r -

where the first sum extends over all ions of the unit cell from the first surface plane up to those (13,K") lying on
the same plane with ion (13,K). In Eq. (22) we assume, for reference, that the potential on the first surface ------

plane is equal to zero. .
The total electrostatic energy of the ions in a long unit cell of the slab, due to the above-described macro-

scopic potentials, will be
N N

WVT'(13 ,K ) ,  (23)

and the interaction force constant between the planes (13,K) and (l'3,K'), due to their vibrations as solid planes,
is given by

(24)13X,,(13,K@;16,;,7=

or, by using Eqs. (22) and (23) and taking the second derivative,

@ ~~'uf (K,'1,Kgoa o/+) 1~' ,K'), (25a) .---:.:

where

4s-'(lK;I3 ,')= AV,(N) [ )t.--6.,6--Luf(1 2 13 1
6
,tr 1 -- 3Nblr.)K(l

3  -- '

A V, (N)
+ -' (81 16.- 81NSc )(8,3  , - j81 'ic )8 cosa cos0 (25b)

L 3

and where 8's are Kronecker's 8's. the interaction of Eq. (25a) has to be calculated on . .. -

From Eqs. (25a) and (25b) it is evident that for a the basis of a more realistic assumption. .-
given slab there exists a constant long-range interac- The total force on the ion plane (13K) due to the
tion between any pair of ion planes, depending on displacements of all other ion planes is (a com-
the thickness of the slab [first term in Eq. (25a)], ponent) S
plus an interaction between each surface plane and ""("" "'"("")"2a
the rest of the slab. This latter interaction given by F,(13,K)= - 2 ac 3 .. ..''3 ' 3'

the term ba0(1 3,K;1,K') in Eq. (25a) is a conse-
quence of the change in the thickness of the slab due or

to vibrations of the surface planes. Fa( 13,K) = - !!cosa 2, 4,'cosfua(l'3 ,K')
We should note that the interaction between any sL

pair of ion planes exists even if we consider the slab
as a part of an infinite crystal and as we shall see - 'r 3, , ,')u,(1'K . (26b
below it gives an alternative for the calculation of ,3',a..,
the macroscopic field following a two-dimensional To make a comparison with the three-dimensional . -. .'.. .
summation method. For a slab which consists, in case, we take the limit of Fa(13,K) for very thick _
part, of a different structure (e.g., heterostructure), slabs. We recall [Eq. (25) of paper I] that. .



3404 G. KANELLIS, J. F. MORHANGE, AND M. BALKANSKI 28

L =(N - )a +d, (27) structure. As far as interactions between plane lat-

where a I is the thickness of a one-unit-cell layer and tices on different planes are concerned the infinite -.

d is the distance between the two outermost ion two-dimensional sums in direct space are converted - 4

planes belonging to' the same unit cell. For N--, o into sums in reciprocal space only, which converge
we can introduce the cyclic boundary condition, rapidly, depending on the distance of the plane lat-

neglecting the deviations near the surfaces, and we tices. In the case of a slab of the zinc-blende struc-

can put ture parallel to the (I IT) plane, ten to twelve terms
-- "aKx[- i ()], 8a are needed for an accuracy of the order of 10- 6 (in
u.(13,K)=u.(K)exp[ -21riyi'- , (28a) units of e 2 /v) to calculate the interaction of the

where Yj is the wave vector perpendicular to the closest plane lattices, while three of four terms are
plane of the slab. Then for long-wavelength vibra- enough to calculate the interaction of more distant
tions planes. On the other hand, this interaction drops off

Yj-0 and Ua(13,K)z-Ua(K) (28b) very rapidly with the distance between the interact-

faking the limit of the first term in Eq. (26b) for ing planes, becoming about 8 orders of magnitude

N -. oc, we get weaker for the fourth neighborhood, for zero wave
vector, in the above example.

lim Fa(13,K)=Fa(K) For interactions between plane lattices lying on
N-o

41r N cosa the same plane, a two-dimensional version of the
li N Ewald's method of summation is used. Comparing

v a1 -d our results with the formulas given by Tong and •
Maradudin for NaCI we find that in case A, they

X Mg,(K')'V 1 (29) are practically the same, while in case B they are
K' different since Mackenzie's method sums both, in

direct (over infinite ion lines) and reciprocal space
since the second term in Eq. (26b) tends obviously to (one-dimensional transform for each line). We con-
zero, and finally sider the formulas given here as accurate and of easy

41r
Fa (K) .... cosa g.1 P(K'). io (30a) and direct use in any case. We also note that the

Va 'V, dependence of the interaction coefficients of Eq. (14)

where 0(K') is the point dipole at ion site K'. on the dividing point R is unimportant. A value of
Hence the total force on ion K is R equal to (ir/sa)l/2 is quite adequate without any

b further test.
SF(K) ,Ema , (30b) Finally we should add that the given formulas for

where the interaction coefficients contain the macroscopic
field. If, for instance, one uses the present formulas

4ir.(31 to calculate the Coulomb interaction in the usual
P " - v single-cell approach of the infinite-crystal case, -sum-

ming in direct space as implied, what will be ob-
The field of Eq. (31) is exactly the macroscopic field tained are the longitudinal solutions for the corre-
of Eq. (18) in the limit of zero wave vector from the sponding direction. A two-dimensional summation
direction perpendicular to the plane of the slab. method, such as the present one, implies the pres-

It is also possible to obtain a more general expres- ence of surfaces even at infinity, and does not
sion for the interaction constant between ion planes separate out explicitly the macroscopic field. A slab
of the slab for wave vector , in the same sense of infinite thickness is not equivalent to an infinite
as in Eq. (25a), if necessary. This can be done by us- crystal, since it presents an infinite potential differ-
a ing the (h 1i2)=(O) term of Eq. (6) where the dou- ence between its two surfaces. Compensation of this
ble differential and the sum over j3 is neglected, potential results in a definite field. The variation of--"'-" p0(l'3,K') is replaced by g.,, and a summation is per- ' il!i|
"i lam ithat field, due to vibrations of the parallel to the
formed over all (1' ,K') in order to take an appropri- surface's ion planes, is the well-known macroscopic
Sate expression for the potential, field responsible for the higher frequency of longitu-

IV. ISCUSIONdinal modes in polar crystals. The calculation
presented above shows how this field could be calcu-

We have calculated the Coulomb interaction in lated in more complicated cases, such as the recently
the case of ionic slabs of arbitrary orientation in any developed heterostructures. _ S

______ ______ ____•__-._-____
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Erratum: Lattice dynamics of thin ionic slabs. If. The long-rmnge forces
•(hys. Rev. B 28, 3398 (1983))

G. Kmnellis. J. F. Morhange, and M. Balkanski

Please make the following changes to our paper.
(I) Page 3399, in the first line of Eq. (6). instead of

,~ ~ ~3 .. 
.....-. -

write

(2) Page 3400, in Eq. (9), do the same as above.
(3) Page 3400, in the first line of Eq. (10), instead of

write
4,w,

s. .1.,2

(4) Page 3401, in Eq. (13), the quantity in the large parentheses must read

-'Ipp , K")Q.0(I,, .C;,3, KIY) +P,(13.)r(1,, K,. ',)] .'"1  "

(5) Page 3401, second line of Eq. (14), instead of
".:":'"4w2

RS.
write

4w 3
RS.

(6) Page 3402, in Eqs. (19a), (19b), and (20), the sum over K' runs from I to the number of ions in the unit cell (not to

(7) Page 3402, 10th line from the bottom of the right column, instead of... by the result of the crystal , write ... by .*** -,

the rest of the crystal ,,.-
(8) Page 3403, in Eq. (22), delete N on the rightmost summation symbol (over K').
(9) Pae 3403, in Eq. (23), delete N on the summation symbol over Kt..'..
(10) Page 3403, last two lines of the left column, instead of ... which consists, in part, of a .... write ... which consists

:; ,, ~Part Of a . .... .
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Lattice dynamics of thin ionic slabs. III. Application to GaAs slabs
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de ta Recherche scient(fique, 4 Place Justleu, F-75230 Parks Cedex 05, France
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The lattice vibrations of thin slabs (up to 25 layers) of GaAs are calculated for zero wave
vector, on the basis of a rigid-ion model fitted on the phonon dispersion curves of the infl-
nite crystal. It is shown that all the modes, except the surface ones, fall on the branches of
the dispersion curves of the infinite crystal, while the surface modes seem to be combina-
tions of throe mising near the zone-edge modes. Comparison is made with former calcula-
lions and the influence of the short-range interaction near the surfaces and that of possible
macros copic fields is discussed.

I. INTRODUCTION the (100) plane and pointed out the importance of - . .

some approximations made in the former work.
, Normal modes of vibrations of thin ionic slabs Further comments on this point are given by Jones

have been investigated theoretically by many au- and Fuchs.7 We also found the proper description
thors,1- 9 mainly on the basis of a rigid-ion model, of the short-range interaction between atoms near
and the existence of surface modes have been well the surface to be of fundamental importance in cal-
established. Jones and Fuchs7 calculated the unre- culating the correct frequencies of the surface
tarded modes of a thin NaCI slab; they developed a modes.
theory for the infrared optical properties of ionic Among the considerable experimental works on
slabs and discussed previously published results on infrared absorption or Raman scattering on thin .-- '. -,
surface modes. Since most of the work mentioned films and powders, which show vibrational states ei-
above has been done on NaCI slabs a more substan- ther between the TO and LO frequencies of the in-
tial comparison is possible between their results. finite crystal or below the TO frequency, we men- ..-

Benedek9 calculated surface dispersion curves and tion the infrared transmission and reflection mea-
phonon densities for thin ionic slabs on the basis of surements on thin (up to 68 pm) films on GaAS by
a breathing shell model using Green's-function for- Cochran et al." and Fray et al. 2 They observed in
ralism. This approach suitably extended proves to a 25 14m thin film, lattice absorption on the TO and
give very good results compared to those from direct LO frequencies and also two other strong peaks on
calculations on thin slabs. frequencies lying between these two. Each of those

A very general approach to the effect of surfaces peaks seems to consist of three or four fine-structure
on the vibrational modes of crystalline solids is peaks. These features are attributed to the size, 0
given by Feuchtwanglo based on the assumption of shape, and orientation of the specimens used.
finite-range interaction. Although in ionic crystals Raman spectra on laser-annealed GaAs (Ref. 13)
long-range electrostatic interaction is important, show a gradual transition from the amorphous spec- I
infinite-range forces arise only in the presence of a trum to the crystalline one involving a continuous
macroscopic field. Hence his results must be, in variation of degree of order versus the annealing

., general, valid. Different features may appear to ap- density energy. The above experimental results and
-, ply only to modes depending strongly on forces due also analogous results on other materials reveal the

,,. to such fields. The influence of a macroscopic field need for a complete calculation of infrared and Ra-
on the vibrational modes of a slab will be discussed man spectra of small crystallites in order to justify
briefly in the last paragraph of Sec. IV. the hypothesis of size effects.

Dispersion relations for surface modes are given In the present paper we report on calculations of
by Fuchs and Kliewer' who found all long- vibrational modes of thin GaAs slabs parallel to
wavelength optical modes of an ionic slab to have ei- (I IT) planes, on the basis of a rigid-ion model. This

--. ther TO or LO frequencies. Tong and Maradudin 3  model has been used by Kunc" to fit measured pho-
treated in detail the case of a NaCI slab parallel to non dispersion curves, hence our results are directly

28 3406 @1983 The American Physical Society
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comparable to the ones of an infinite crystal. The Do,( 3,K;'3'K'IY )

long-ranpe interaction has been calculated in a form- *(Is' .c.)
er paper referred to as paper I1. 1;.l(

In the next section we briefly review the equations -
of motion and the resulting dynamical matrix to be X exp[2riy'1(l,K;l'K')]
solved. In the third section we describe in short the (5)
rigid-ion model used for the calculation and the pro-cedre ppled o alclat th shrtrane iterc- are the elements of the 6NX×6N dynamical matrix .'.:....... .".-.
cedure applied to calculate the short-range interac-in the slab). Since no
tion of atoms lying near the surfaces. Finally, in the periodic boundary condition is used along the finite 
last section we describe the results obtained and we

dimension, any further reduction of the dynamical
discuss them in comparison with other results. matrix will be likely possible only from symmetry

considerations.
It has been shown'7 that for the above chosen

II. EQUATIONS OF MOTION orientation of the slab one can use a new coordinate
AND DYNAMICAL MATRIX system Ox x2x3, related to the old one associated .-

with the crystallographic unit cell, by the transfor-
We consider a crystal slab of zinc-blende structure mation

(particularly GaAs) parallel to the (11T) plane.
Choosing a Cartesian coordinate system OXIX 2X 3,
whose axes are parallel to the edges of the cubic fcc 0 1 V3V3 0 _0
unit cell and its origin on an ion site (for instance, a G 2 -76 1 1 2 X02 , (6)
Ga site), the primitive translation vectors are 2 o3

i1  0 1 1 X01  whose Ox and 0x axe- are coplanar with the slab,

a2 = 1 0 1 i 02  (1) while axis Ox; is perpendicular to it. Since it is al-
1 43 ways possible to find such a coordinate system,

a3  1 x0 3  whatever the orientation of the slab might be, let us

where a is the lattice constant. Vectors i and i 2 lie denote the corresponding transformation matrix by
on the plane (111) while i3 lies out of it. H [in the present case H is the 3 X 3 unitary matrix

The equations of motion for a lattice are1 6  used in Eq. (6)]. . -
With the use of transformation H and the repre-

m,,Ua(l,K)= - , ,')up(1',K'), sentation of the space group G of the three- _ 29
r,'' P dimensional structure with respect to the old coordi-

(2) nate system, one can construct a new space group G'
appropriate for the two-dimensional structure of the

where m, is the mass of the Kth kind of ion, ua(Ic) slab, by transforming the representation of G to the
is the ath Cartesian component of the displacement new coordinate system and by picking up those ele-
from the equilibrium position, 0 I,K;I',K') are the ments which act only parallel to the plane of the
atomic force constants, and 1=(11,12,13) labels the slab.
unit cells. Group G' can then be used to provide the form of

Applying cyclic boundary conditions along the the force-constant matrices and the relations be-
directions i 1 and i 2 [on the infinite (111) plane] we tween the elements of the dynamical matrix. In the
put present case and for wave vector --0, we find that

Va(13 ,K) the interaction between the plane lattices assumes L
Ua(IK)= 0 exp[-iwt+2riy'(l,K)] , the general form

A B -B""'"

D(13,K;I3,K')= B A -B (7)
where Y is a two-dimensional wave vector. Equa- -B -B A
tion (2) becomes in the old coordinate system OX IX2X3 , while in the L_ . .

02 V(1 3,K)= ~ XDap(1 3,K; 3 K' I )vp(I3') , system Ox x 2 x3 it takes the form

A-B 0 0
(4) D'(13,K;I;,K')= 0 A -B 0 (8)

where 0 0 A +2B
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through the transformation TAIIT I. Viluces of iic Coulomb coefficient fl [in
IIII| D•l..,- "K')U.im l. (o

1' AA I' =

The form of Eq. (8) implies that fist- the so-chos-.
orientation of the slab, the solutions of FAI. (4) fall I 2 0 5.591 35

into two groups. one doubly degenerat co4.slin O" I I .1434-
the in-plane solutions (x-y ii1Xles) and ote flolde- 1 2 I 0.03349

generate consisting of the out-of-pllne solutionls (Z 2 I 1 1.43762

modes). 2 2 I --0.14341
I I 2 0.00 40

The matrix whose elements are defined by F 2 2 0.00018
expresses the interaction between plante hillices and
has to be calculated on the basis of some moe ll. III 2 2 2 -0.00040,.- -.
the next section we give a brief description of the2 2 .0.000:0
applied rigid-ion model. Since both short- and
long-range forces are taken into account, it is cUs-
tomary to consider the dynamical matrix as consist-
ing of two parts. the short-range (sr) and the III. THE MODEL

Coulomb parts;
In the present case we use the rigid-ion model

* Di s,K;V;,K')=DSrqi3,KcI',K) (RIM) developed and applied to several binary com-
pounds of the zinc-blende structure by Kunc. 4

+D(1 3 ,K;13,K) . (10) Apart from the effective charge q* the model
T o fw the fparameters are ten tensorial force constants, A and BThe form of the interaction matrices betweenth

plane lattices of the slab for zero wave vector, is for first-neighbor central and noncentral interaction,
given in the Appendix. Cl, DI, El, F1, C2, D2, E2 , and F 2 , for second-

The oulmb artcanbe epresedin erm of neighbor central and noncentral interaction, for the• The Coulomb part can be expressed in terms of nto iffretknsoin.

the Q coefficients calculated in paper II [Eqs. (10) tk All of the above parameters have been fitted to
and (14)], and for the general wave vector it assumes experimentally known phonon dispersion curves, the
the form elastic constants, and the piezoelectric constant. In

D ;order to use the above model in the case of a slab the
D}(Ix;' 3 ' )It, following adaptations have to be made:

(a) Long-range forces have to be recalculated on

x .,,Ox"Qao(I;13 Kl 0') the basis of new suitable formulas as already men-
tioned.

(b) Short-range interaction of the near-the-surface
- ,atoms has to be modified, so as to take the missing

(mIm .)/2 QaD' 1 '3 ' ions into account. For the short-range part of the -
dynamical matrix the following procedure has been

0 1) followed. From the ten fitted tensorial force con-
stants, the values of a set of ten valence force field

where g is the charge fraction attributed to ion K. (VFF) force constants are deduced, namely the g, X,
Values of the Q coefficients for zero wave vector are p,AA, (, v, k9 , k , k, and k, according to the fol-
also given ir the Appendix (Table I). lowing model for the potential energy:

X (Ar,) 2  ( r,:"
ro A ri + ( ,&rij + r ip A ri t, ++,, -u ( A r-. ka j... ."... .

kG-As Ga-As GaG-a k Ga-Ga As-As 2 
As.As

kcer__o k),r+ kw -- k W "" '
+ (A0'J)+-k-- ArArj, a+- AArji , (12)A2-n-A 2 2

A.-Ga-As Ga-As-Ga As-Ga-As Ga-As-Ga

where ro and ri are the first- and second-nearest- should be noted that the ten VFF parameters are not
neighbor distances, respectively, independent, but have to fulfill the equilibrium con-

The interaction of the near-the-surface ions is cal- dition. For the given values of the tensorial force
culated on the basis of the above VFF model. It constants this condition does not hold. Hence we
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each thicker slab are interpolated between the solu-
300 GaAs slabs tions of the thinner one. For a slab 20 layers thick K "

/1LO all the frequencies are within 1% of their limits.
In Fig. I we show the variation of the frequencies

of six modes versus the thickness of the slabs: the
highest-frequency z mode (first LO), the highest-Is' TO -- ""
frequency x-y mode (first TO), and four surface
modes, i.e., two surface x-y modes (TS I and TS2)
and two surface z modes (LSI and LS2). We see

-prTS1 that the surface modes TS I and TS2 have practical-
250: ly constant frequency for any slab as thin as three

s" layers, while the frequencies of the rest of the modes
S ,LTS2 tend very rapidly to their limiting values.

°  The two-dimensional Brillouin zone correspond-
SLSi ing to the slab structure is a section through the

center of the three-dimensional zone of the fcc lat-
tice, perpendicular to the A direction (-g, - , g). -
Comparing the frequencies of the above modes with

2 o00 .... kO "0k *. LS2 . the frequencies of the modes belonging to the disper-
200 , LS2  sion branches of the A direction of the infinite crys- i .

0 tal, we find that the first LO and first TO modes
tend to have frequencies equal to those of the LO -

2 1 15 ' 20 and TO modes of the r point of the infinite struc-
lure, respectively. The surface mode TS I has a fre-

Number of layers quency almost equal to the TO mode at the L point,

while modes TS2, LS 1, and LS2 have frequencies h.

FIG. I. Variation of the frequencies of six modes vs which fall into the gap at the L point of the infinite
the thickness of the slab. crystal.

Before making any further comments on the sur-
face modes and on the rest of the modes, we will
turn our attention to the eigenvectors. For a GaAS

decompose the tensorial force constants into the slab N layers thick, there are 2N x-y modes, which
VFF parameters disregarding this condition. are doubly degenerate (the transverse modes), and

By so doing, only the interaction of atoms lying 2N z modes (the longitudinal ones). From the 2 ,-

near the surfaces may be influenced. Since the modes in each configuration, N are optical anm the
correct description of the above interaction is of remaining N are acoustic. Among the •N optical
critical importance in calculating the surface mode modes in each case there are two whose amplitudes
frequencies, one needs a faithful VFF model in or- decay exponentially along the finite dimension of

der to obtain unambiguous results for these modes. the slab, from the one surface to the other, and are

In the next section we comment on the results based therefore called surface mo,:'s. For wave vectors
on the above consideration and on those obtained different from zero the so-called Rayleigh waveslb
when the short-range interaction of surface atoms is appear, among the acoustic modes. For each optic
considered to be the same as for atoms in the interi- mode m we construct the difference of the reduced
or of the slab. displacements,

u(1 3,1 iM) u(13,2 n)
IV. RESULTS AND DISCUSSION f:°(13)= , (13)

We have calculated the frequencies and the eigen- where 1 denotes the Ga atom, 2 the As atom, 13

vectors for thin slabs of GaAs oriented parallel to numbers the layers of the slab, and M is the mass
the (I11) plane with thicknesses from 2 up to 25
cells (10-130 A thick) for zero (two-dimensional) Accordingly, for the acoustic modes, we construct
wave vector. the sum of the same quantities. .-. '.-

The main feature displayed by the solutions is u(13,I I m) u(13,2 1im)
that, by increasing the number of layers of the slab f,,(13)= + (14) .
(i.e., its thickness) all of the solutions tend rapidly to
certain limits, while the new solutions appearing in In Fig. 2 we plot f, P(i ) and f(1) vsz l,

f ,(l vs = " .- '"
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x-y modes -- ... .
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FIG. 2. For a slab of ten layers: (a) Relative reduced l

ionic displacements for some x-y optic modes. Number- y
ing starts with the mode of highest frequency. (b) Sum of
reduced ionic displacements for some x-y acoustic modes. FIG. 3. For a slab of ten layers: (a) Relative reduced
Numbering starts with the zero-frequency mode. ionic displacements for some z optic modes. Numbering

starts with the mode of highest frequency. (b) Some of re-
duced ionic displacements for some z acoustic modes.
Numbering starts with the zero-frequency mode.

the coordinate along the finite dimension of the slab,
for some x-y modes (transverse modes), and in Fig. 3
we plot the same functions for some z modes (longi- 2 (m - I )irz (16)
tudinal). It is evident from these figures that all the f, (z), --cos (16)
optic modes, except the surface ones, can almost be L-- L

described (neglecting the sign) as (m = 1,2 ...., N, numbers the optic modes starting .
from the highest-frequency one and the acoustic/ , 2 m z"-'-".

2 .-m si (15) modes starting from the zero-frequency one). -.--
We note that the above simple trigonometric ex-

where L is the thickness of the slab, while the acous- pressions do not describe exactly the functions of the
tic modes can be described as displacement defined by Eqs. (13) and (12), but rath-



28 LATTICE DYNAMICS OF THIN IONIC SLABS. III.... 34i I

GaAs slab (2o cell) modes cannot be described by the same function fP,
300- only N-2 optic modes could be attributed to the

wave vectors of Eq. (17). On the other hand, all the
N acoustic modes can be regarded as corresponding
to some wave vector Yz, We should note that the

-TS, solution of zero frequency for y,=O has been im-
TS. posed by using relation (A5) when calculating the

LS, self-terms of the dynamical matrix.
According to the above observations, we plot in

LS2  Fig. 4 the dispersion curves of GaAs along the A
2o0 direction, as they have been calculated by Kunc on

u the basis of the same model and we put on the same

graph the solutions for a slab 20 layers thick. We
have chosen this thickness where each solution has
reached its limit within less than 1%. Acoustic . -
modes start from zero wave vector, while optic
modes start from wave vector equal to 0.5/20. We
see that all the modes, except the surface ones, -fall
on the corresponding branches: x-y modes on the

100 transverse branches and z modes on the longitudinal L
ones. There are four optic modes missing. Instead
there are four surface modes shown by dotted lines
on the graph along the zonewidth, although they
seem to belong to a value of the wave vector very

/ .close to the zone boundary. Hence we conclude that
the surface modes could be regarded as superposi-
tions of the missing optical modes, and perhaps the

0 . - -: corresponding acoustic modes of the zone edge, in
0 0.1 0.2 0.3 0.4 o each configuration (transverse or longitudinal). The
r Wave voctor L longitudinal surface modes (z modes), considered as ,

being superpositions of modes of higher frequency, . " - ",

FIG. 4. Phonon dispersion curves of GaAs along the A appear to have lower frequencies than the transverse

direction (solid lines). x-y modes (solid circles) and z ones. They also show considerably less decay along
modes (open circles) for a slab of 20 layers thick. Broken the finite dimension of the slab. Both of these
lines show the position of surface modes. The positions of features could be explained, qualitatively at the mo-
TO and LO missing modes near and on the zone boun- ment, by the weaker short-range forces near the sur-
dary are shown by arrows. faces and by the assumption that these modes are

strongly damped by the long-range forces. We 0
should note at this point that the slowest conver-
gence of the frequencies to their limiting values,

er, give a good picture of what these functions look with increasing thickness of the slab, is observed for
like. Moreover, although the functions sketched in the longitudinal modes of shorter wavelength (wave
Figs. 2 and 3 refer to a slab ten layers thick, the pic- vector near the zone edge). Indeed, the frequencies
ture is the same for slabs of any thickness. of the surface modes depend very strongly on the

From Eqs. (15) and (16) we see that there is an short-range forces assumed for the surface layers. If
implicit dependence of the modes on a wave vector we restore on these layers the same short-range
along the finite dimension of the slab, although such forces as for the rest of the slab, then all the modes, .
an assumption has not been made. All the modes, except the surface ones, tend faster to the same lir- . 7
except the surface ones, on which we will comment iting frequencies. The surface modes have higherl
later on, seem to be characterized by the values of a limits as follows: The TS 1 mode, 253.3 cm - (in-
wav, vector stead of 252.5 cm-1), the TS2 mode, 247.3 cm - 1

m. (instead of 235 cm-1), the LSI mode, 250.7 cm -  .. ,..
:'fy L(17) (instead of 230.7 cm-1), and the LS2 mode, 249.6

cm - (instead of 210.5 cm-1). We see that the long-
There is no optic mode with n =0, i.e., there is no itudinal surface modes have a much stronger depen- .
mode of infinite wavelength. Since the surface dence on the short-range forces assumed for the sur-
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face layers, but still at least one of them should have cussed by Tong and Maradudin, we would like to
higher frequency than the transverse modes if no note that their results for "bulk" modes concern
damping due to long-range forces was existing. those modes which lie on the corresponding
Hence the correct description of the short-range branches but very near to the r point. Hence for a 0
forces near the surfaces is of critical importance in thick slab there are many modes which have the
calculating the surface mode frequencies. Of course, zone-center TO and LO frequencies with small wave . -

the eigenvectors are also influenced by the change of vectors mir/L. For optic modes we have found
the forces near the surface, in particular the eigen- only the sine dependence of the displacements with
vectors of the longitudinal modes, but they retain odd and even values of m. Their point, that this - 4
their main features. Stronger forces between the dependence is such that there are exactly m half 0
surface layers result in deeper penetration of those waves across the thickness of the slab, is correct
modes in the slab. even for very thin slabs and for the acoustic modes . .

On the basis of the above observations it is clear also. The quantization of the wave vector along the - -

that the continuum of frequencies for "bulk" modes finite dimension is of course the same for all disper-
obtained by several authors when calculating solu- sion branches.
tions for different wave vectors on the plane of a The surface modes found by these authors reduce,
slab, is the projection of the dispersion surfaces of for zero wave vector on the plane of the slab, in un-
the infinite crystal on the two-dimensional Brillouin localized surface modes, corresponding to zone-
zone appropriate for the slab. Comparing our re- center modes of the infinite crystal. It has been
suits with those of Tong and Maradudin,3 who cal- shown by Feuchtwang' ° that these modes are a spe-
culated the solutions for a slab of NaCi parallel to cial case of bulk modes. Since the above authors
(001) plane, we could note the following: The fre- treated the case of long waves, these modes may be
quency of the transverse surface mode in NaCI, ly- the only ones which, for finite wave vectors (A0) on
ing just below the lower limit of the "bulk" optical the plane of the slab, became surface modes. Lucas4

modes, is in agreement with our results. The near and Jones and Fuchs7 attribute the above behavior
degeneracy of both pairs of surface modes they of these modes to the neglect of the changes of the
found can be explained by the fact that the two sur- forces acting on atoms near the surfaces. The re-
faces of the NaC! slab in the above orientation are suits of the latter author at Y = 0 are in agreement
completely equivalent. Moreover, the thickness of to those of Lucas, and Tong and Maradudin, as to ":"
this slab is an integer multiple of the lattice con- the number and type of surface modes.
stant, while in our case it is not. This feature may A final remark concerns the possible influence of
be of importance when superimposing plane waves, macroscopic fields. We have shown in paper II that
due to the phase difference it may introduce. As far vibrations involving ionic displacements perpendicu-
as it concerns the higher-frequency surface modes lar to the plane of the slab give rise to a potential
for zero wave vector in the case of the NaCI slab, difference between its two surfaces. This potential
they can be considered as unlocalized surface modes does not influence the vibrations of a free slab, ex-
whose wave vector perpendicular to the plane of the cept if it results in additional surface charges, or if
slab can assume values either at the center or at the the slab is considered in some polarizable environ-
zone boundary' ° in the present case. The corre- ment. In such cases, assuming complete compensa-
sponding modes in our case are of the same type as tion of the above potential, all the frequencies of the
those found by Wallis."1 This difference may be due z modes tend slower to the same limits, while an ad-
to the fact that the NaCI slab consists of identical ditional phase difference is introduced in the dis-
"neutral" planes. placements of atoms in neighboring cells. This

Fuchs and Kliewer' treated the case of long-wave phase difference moves all the optic modes one step
optical vibrations in a slab in the electrostatic ap- toward the zone boundary. Hence for a slab thicker
proximation. Apart from the influence on their re- than ten layers, the relative displacements show the
suits due to approximations concerning the short- same pattern as described by Eq. (15), but now
range forces near the surfaces and the replacement modes with m =0, n 1, and m =N - I are miss-
of infinite sums by integrals, which have been dis- ing.

APPENDIX

The form of force-constant matrices (interaction between individual ions) for the zinc-blende structure is the
following:
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ABE [IA B -BI

V1l;,2=B A B _t(1,2;1',0)= B A -B
B B A 1 -B -B A (Al)D

C, D, El C2  D2E

0(1, l;1', )= D, C, El , k(,2;l',2)= D 2  C2  E2

-E, -E, F, -E 2 -E 2 F2

where 1 (11,12,13) and 1'= (11,12,13 +lU.
For the surface layers 10=('1,12,1) and IN =(1I, 12,N) the force-constant matrices in the present case take the

form

,41 B B, 3B3B

(1o, l;I1,2)= B, A, B1 , !kUN,l;IN,2 )= B3 A3 B4  .(A2i

B2 B2 A2  B 3A

The decomposition of the tensorial force constants into parameters of the VFF model used can be found in

Ref. 14 for all interactions, except the ones between ions in the surface layers, which are listed below:

Aj-A -k,/6, A2 =A +4ke/3+krr./6, A3=A -k,./6, A4 =4k4/3+k,/6,

BI = B - k,/6, B 2 =R - 2k0 /3+ k,,/6, B 3 =B -k, 6 B4 =BR k 3 ,/

The interaction matrices for plane lattices for zero wave vector (submatrices of the dynamical matrix) as-
sume the following forms (with 13 =13 + 0):

3A.-B B IA B -Bj
I, 1;l13,2)- -B 3A B , 1(3,2;I3 1)- B A -B ,(A4a)

B B 3A -B -8A

2C, ±Fj D, -D, 2C2 +F2  D2  D

~(3113l- D, 2C, +F, -D, ,0D1 3,2;1',2)- D2  2C 2 +F2  -D 2  .S

-D, -D, 2C, +F1  -D 2  -D 2  22+F
(AWb

Self terms, for zero wave vector, are calculated on the basis of the equation'16

Y,(b0UK;'K')0 .(A 5)

The corresponding interaction matrices for planes of the surface layers (13 1 and 13 =N) take the form

2A I+A 2  -B 2  B2  2A 3+ A4  -B 4  B4

Q1,11,)- -B 2  2A I+A 2  B2  , a(N,l;N,2)- -B 4  2A3 +A 4  B4  . (A6)
B2  B2  2A,+A 2  B4  B4  2A3 + A 4

All the Coulomb interaction matrices assume for zero wave vector the form

2(0,K;I',K')= /3 0 -/9 W) (A7
-/ -/9 0

The values of /3 are given in Table I for I'=O, 1, and 2. All more distant interactions are less than 10-' tin
units of (Ze )2/Va..
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Erratum: Lattice dynamics of thin ionic slabs. 111. Application to GaAs slabs
IPhys. Rev. B 28, 3406 (1983))

G. Kanellis. J. F. Morhange. and M. Balkanski

Please make the following changes to our paper.
(1) Page 3413, in Eq. WA), instead of

!(ININ, 2)- B3A 3B4

B3B3A s

write

*ti.~~~. Ab.~8, 1849

8 HA 41

(2) Page 3413, in Eq. (AD). instead of

write

44 -4A,*,3,- ./6 +.4
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Anharmonic effects in light scattering due to optical phonons in silicon

M. Balkanski, R. F. Wallis,* and E. Haro
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Systematic measurements by light scattering of the linewidth and frequency shift of the ic=0 op-
tical phonon in silicon over the temperature range of 5- 1400 K are presented. Both the linewidth
and frequency shift exhibit a quadratic dependence on temperature at high temperatures. This indi-
cates the necessity of including terms in the phonon proper self-energy corresponding to four-
phonon anharmonic processes.

I. INTRODUCTION Recently, Tsu and Hernandez' have reported measure-
ments of the frequency shifts of both one-phonon and

Experimental studies of the inelastic scattering of light two-phonon Raman lines for silicon over the temperature
by crystals have provided a great deal of information con- range 20-9000C. Where their results overlap with those
cerning the optical modes of vibration at the center of the of Hart e, al., the agreement is good. No data on the
Brillouin zone. In pure materials one finds typically that linewidth is presented by Tsu and Hernandez. -.
both the line center and the linewidth vary with tempera- In the present paper, measurements of the light scatter- f .
ture. This temperature dependence can be attributed to ing spectrum of silicon are reported for the temperature

*the anharmonic terms in the vibrational potential energy.' range between 5 and 1400 K. The temperature depen-
If one restricts oneself to cubic anharmonicity in second dences of the frequency shift and damping constant of the

order, the damping constant which characterizes the Raman active LO phonon are analyzed in terms of cubic
linewidth is proportional to the absolute temperature T in and quartic anharmonic contributions. It is found that at
the high-temperature limit, but when one includes quartic the higher temperatures, cubic anharmonic terms to
anharmonicity to second order and/or cubic anharmonici- second order are not sufficient to fit the data, but the in- A.J. .
ty to fourth order, the damping constant involves terms elusion of higher-order terms involving cubic and/or:- ..-
proportional to T 2 in the high-temperature limit.2 For the quartic anharmonicity makes possible a satisfactory fit.
case of silicon, Hart, Aggarwal, and Lax" have measured
the frequency shift of the line center and the damping
constant over a range of temperatures from 20 to 770 K. 1I. ANHARMONICITY IN LIGHT SCATTERING
They found that their data for the frequency shift agree BY OPTICAL PHONONS
rather well with the theoretial calculations of Cowley4  For a system whose equilibrium atomic positions are
based on cubic anharmonicity to second order, but their F aye h qubm t c io r
data for the damping constant show significant deviations specified by

from Cowley's results. Hart et al. were able to show, fk(1,K)=K(i)+i(K) , (2.1)
however, that their data for the damping constant can be
fitted satisfactorily by the cubic anharmonic model of Kle- where iR(tJ=1, '1 + 2?+l Ix , the F. are primitive
mens5 if the zero-temperature value of the damping con- translation vectors, the li are integers, and R(K) is a vector 0
stant is properly chosen. of the basis; the vibrational Hamiltonian can be written as

H= " . (..)+j- 0.,,l;l',K')ua(IK)u,(l',K')
ix0ra MxaIic.

. / ,.a /.e.a t'%o'.,T
+ 2 ) (2.2u

equilibrium position and -ap, 4 and are the har- transformation
mon"c, cubic anharmonic, and quartic anharmonic force
constants, respectively. The first two terms are the har- *((=W I

monic Hamiltonian Ho. The remaining terms are the 2Mi 4-1 '~
anharmonic Hamiltonian HA. We diagonalize the har- (2.3)

23 1923 ®1983 The American Physical Society
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1
/
2 and N is the number of unit cells in the crystal. The field

P(I,KI=-i 2N W, ( -C/lnW(K I -4,j) operators A -,, and B-.,, are specified in terms of the pho-

non creation and annihilation operators b L, and b ,j by
the relations

Xe tq RI) j (2.4) '":--'
A-.4J -,j+b -, (2.5)

b- =b- .- b* (2.6)
Here (o-., is the normal-mode frequency for wave vector q .j q' J - 4 .j

4 and branch index j, V(K I 4,j) is the polarization vector After making the normal-coordinate transformation, the -
for the normal mode, M. is the mass of an atom of type x, cont.butions to the Hamiltonian take the forms

Ho=7 . o (A- A-. .+B- .BA )= X&U,(b -b ,.+L) (2.7)
4 .1 q i 4j q .q .j qjq 4
-qj -, -

( ;j . . j

,I. " ...''
A, ,jq ,j",q ,j )A A-*,jA-q,,,A-. "" . (2.8

q~j. q.

The anharmonic coefficients V are given by. -

I-3/2,/2
.. ( ... ,j,,= i 2N j -N A + + 4

NAm T't,'p T'l,se,r

XWa(K I 4,j)Wp(K' I 4 ';j')W,A K" 14 ",J") W(, W r]

r 2

V~,j2q ,jqNj q - 2 2N J .o . .. .

v• ,...•. -o.X v(, ; , ?aI ,K ,K2.9!,..... .-.

Wa(K I 4 j)W(K' 4 'j') W(K" 14 ",j ") WB(K"' 1 "'j...

(M K .....M.'.'. .

where where R (Q ;,S) is the Ramian tensor, the branch index j
refers to the longitudinal optical branch, it, .fs) is the

W I) (2.10) wave vector of the incident (scattered) radiation, a is the -

10 oheriselattice constant, L is the crystal thickness, w is the

and G is a vector of the reciprocal lattice. zone-center LO-phonon frequency, and no is the mean

In the case of light scattering, the efficiency for Stokes number of LO phonons.
scattering by zone-center LO phonons in a homopolar The resonant frequency fl(,Oj;) in Eq. (21 deter-

*crystal is given7 by mines the scattering line position and is given to first ap-

d'S e4 LVproximation by

dawdi) - 2m9m 4a2MNc 4 W (1 fl(Oj;w) = 0).j +~ ; ..). (2-12) .
0,)

The quantities &( O,j ;(o) and n( Oj ;c) specify the real
X (no+1) AR(j;I,S)I1 and imaginary parts of the proper self-energy, P(O6j;co),

according to the relationi "- ..-.

Xr(oj;w) (211 lim P6jn+e=-A4Ojw-ii~~)
,o. -... • .(2.13)

.- .:....-...-..:. .
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* and are referred to as the frequency shift and damping higher-order terms in the anharmonic Hamiltonian HA. ." """'
constant, respectively. Each of these quantities is the sum The cubic and quartic contributions up to and including
of contributions arising from the cubic, quartic, and second-order terms are given by'

* t&3{,~ ) - - -( (O,j;qaJ)-, 18 ":""':"

r .->j , -.' '.

ni +n 2 + ' a+n 2 +1 n -n 2  fl-n2X.9 (+oi+(z -- 0i-W + 0--,+02 0+0)-2 (2.14a)

,- )'<j;r0 = L V(6,j;6j; qj ,j,;- j 3+ , (2.14b)

A(4b,(d'j;W)= _2 6 i.6,.lj~ zj2 ,~ z
i..

q41 4 Q21)2 i 3 4)3

(p (n,+1l(na+l)(n3+1)-n 2 "3 1

(0+0) 1+0 2 +0 3  (0-1 (
0

2 3

+ 3[n(n 2 +1)(n 3 +l)-(n +l)n 2n3]

1 (2.14c),, X )-IW--(1""02"+ (3 (O+6=)1- 02-03 L '

576

-40j 1 12 q,,J3  *

X01 n, +n2+1 n -n

of +4:j W1 -02

r- × ,r,,-,I .12

X( (n, +n 2 + +W&-2 o2 -(-- 2 o)]

+(n -n)((w~I-a)-(o-I+ 2 )J '(2.15a) Z~

-6. 
.-.

"2 V(,j; 2,J,;2,j 2 ;43,J3f-"
b?%

. -,..I

~~~~x [(sn + 1)(n 2-t+ 1)(n 3 + l)-n In n3 ](((w-o 2i--aJ--o)-8(o0+e,, +oz+ )] . . **

+ 3[nj(n 2+lXn 2+l)-(n +l)nan3J

-( 1

I I II I I(2.l'.b)
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where 9 denotes the principal value. In Eqs. (2.14) and
(2.15) we have written 0.

i =1,2,3 (2.16a) ": '

n-n =1,2,3 (2.16b)

e q -1'

where #= I/k BT. The various contributions to the fre-
quency shift and damping constant are shown diagram-
matically in Fig. 1. In addition, there are other diagrams
not shown in Fig. I which can give nonzero contributions
due to the fact that the atoms in silicon do not lie at (b) -
centers of inversion symmetry.

A specific remark should be made about the tempera-
ture behavior of A and r. At high temperatures, i.e., tem- ... .
peratures larger than the Debye temperature, the cubic
anharmonic terms in A and r given by Eqs. (2.14a) and
(2.15a), respectively, vary linearly with T. The quartic
anharmonic term in A corresponding to Eq. (2.14b) also
varies linearly with T, but the quadratic terms correspond-
ing to Eqs. (2.14c) and (2.14d) vary quadratically with T. (c)
The quartic anharmonic term in r corresponding to Eq.
(2.15b) also varies quadratically with T. Additional T2

contributions to both A and r arise from terms corre- FIG. 2. Diagrams representing higher-order contributions to
sponding to the diagrams in Fig. 2. the proper self-energy of the Raman-active LO mode in silicon.

The light scattering process can be viewed as involving
the absorption of a photon.Aw, the emission of a photon shown diagrammatically in Figs. 3(a) and 3(c). At
&os, and the creation of an optical phonon Oj which then nonzero temperatures, processes can also occur in which .
decays via anharmonicity into two phonons, three pho- the decay of the optical phonon Oj is accompanied by the
nons, etc. The production of two and three phonons is absorption of another phonon, and the emission of one or

more phonons, as shown in Figs. 3(b) and 3(d) for the
A" cases of one and two emitted phonons, respectively. - ..-

(o) CUBIC III. EXPERIMENTAL RESULTS

Light scattering measurements have been performed
with a CODERG PHO spectrometer and an excitation . -

I laser on single crystal nondoped silicon with a resistivity
of 100 (1 cm and oriented with a (11) face perpendicular
to the incident beam. In view of the large temperature
range explored the temperature was regulated in a liquid- L ._
He cryostat for low temperatures, an electrically heated

(c) QUARTIC furnace for the intermediate temperatures, and by laser
heating at high temperatures.

The sample temperature was measured by a platinum
resistor for low temperatures, by a thermocouple in the in- ..
termediate range, and by an optical pyrometer at high
temperatures. Verification of the measured temperature I -A -

(dl was made by two additional methods. The first used the
integrated ratio of the Stokes to anti-Stokes Raman peaks. .'- . ..-

The intensity of the Stokes and anti-Stokes peaks being .'

proportional, respectively, to no+ 1 and n0 , the intensity . . -

(e CUBIC is

-= exp (3.1)"-. .. ..- .
AS k","R"T."- I

f) QUARTIC where o0 is the Raman frequency. (W! omit the subscript
j from here on.)

FIG. I. Diagrams representing contributions to the frequency The second method was based on the black-body radia-
shift A and damping constant r for the Raman-active LO mode tion of the sample. If we admit that the sample is a black
in silicon, body we can apply Planck's law for the power emitted per
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'hot5  -

S (a)

200O 400 W00 S00 1000 1200 7zoB ~-
or iS I FIG. S. Anti-Stokes to Stokes intensity ratio vs tempierature,

tiw I - considering the correction as discussed in the text. Tht' closed
- _ - - - - qJ 2  (C) circles represent points for which temperature was measiired by

a Pt resistor, a thermocouple and for temperatures above 60h' C .-

q by an optical pyrometer. The open circles are points obtained by
q~j 3  heating the sample with the laser and the oven; their tempera- *

- - ture is not precisely determined. The theoretical curve .

S q 2J2 exp( -&ioO/kBT) is represented by a solid lint L

'h4 (d)
f1fOLO)=498 cm"". The Stokes to aniu-mtoi~es ratio of .

- " .. -- - ~j 3 the intensity of these peaks gives the temperature b\ u~inn
q 1 j 1 the solid line representation given in Fig 5. In this 119,1'

FIG. 3. Diagrams representing three- and four-phonon the black circles represent the Pt resistor, ,iermoco -un.

anharmonic processes contributing to the decay of the Raman- and pyrometric measurements of the termcratur,, A
actie L moe insilconder to reach the melting point, we heated th samon - -th

the oven and the laser, by increasing the -po- e7 be3ifl
This is represented by the circles. We should nowt tb- ',i

unit area, ~these points we were unable to measurc h epttr
accurately. The calibration of the solid line applies; atter

*P,(ct)da=a(c)--- A dw , (3.2) the measured Raman intensities have been cori'eco'J .'o
4rc fwlB 7_the actual absorption coefficient and the frequeCY10 der'o-

and with a (w = I get the sample temperature. denee of the Raman efficiency. In appis ing these cr
The shape and the position of the peak due to scattering tions the expression for the intensity ratio he om

by the Raman-active LO mode in silicon vary for different 3 ,a tS Sw, 5
temperatures. In Fig. 4 we show for comparison two spec- -s -I ex -(!S - , 3.31
tra taken at 295 and 1140 K. From these spectra we can I Wjla 'AS S(Wt.WAS) I 3

deduce the values of r and fl for these two temperatures: where a,,aAs,as are the absorption constants at the ire-
for T=295 K, r(o,LO)=4 cm, and fl(O,LO)=520 uece JAoS(nintba, ni-Stokes, and
cm and for T =1140 K, I"(O,LO)= 14 cm' and Stokes) and S(wo,os) and S(ot.',coAS) are the Raman cros,

sections at the involved frequencies. Practically all the
points obtained by pyrometric measurements are above the
curve given by the Raman intensity ratio. This indicates
that the temperature determined by this method is Sys-

T.1140K T295K temnatically higher than that obtained b) other measure-
ments. A better knowledge (if' the correction factors is
therefore necessary in order for this method to be used ior
temperature measurements

The damping constant and the frequency shift have
been investigated systematically as a function of tempe: a-
ture. Figure 6 gives the temperature variation of the

-- 520 damping constant IM between 5 and 1400 K. The
480 0 0.50Itcm-1 dashed curve represents rt T) calculated from the relationi

FIG. 4. Fir,t-order Raman spectra for silicon at 295 and
1140 V. The Ince po'.,'on of the zone-center LO mode shifts(34
from PO0 cm- Pt 295 K to 498 cm'' at 1140 K and the P ro +ex(34

-*linewidth fi'ioi 4 cm -' at 295 K to 14 cn' at 1140 K.
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r where y = 4wo/3kjT and A and B are constants. In the

high-temperature limit, the factors multiplying A and B in
20. Eq. (3.8) vary as T and T 2, respectively. 0

Equation (3.8) has been used to fit the experimental data
' presented in Fig. 6 by suitably choosing the constants A

and B. The best values of A and B are found to be 1.295
and 0.105 cm - , respectively, and the resulting plot of
r(T) vs T is given by the solid curve in Fig. 6. We see
that the agreement between the calculated curve and the
experimental points is now quite good. I 0

The experimental results for the line position fl(T) as a
,Th0 M function of T are shown in Fig. 7. Also shown is the fit to

FIG. 6. Temperature dependence of the damping constant r ' the data (solid curve) specified by the expressions

for the Raman-active LO mode in silicon. The solid curve gives 11( T)=wo+A(T) (3.9) . -

the theoretical fit using both three- and four-phonon processes.
The dashed curve gives the theoretical fit using only three- and .
phonon processes. The open and closed circles have the same 2 1 33
significance as in Fig. 5. A(T)=C l+e +D 1+ +

e'-, 
-

(e.- 
2

(3.10)
where x =fiowo/2kBT and F(o)=1.40 cm - . Equation
(3.4) is an approximate expression for the temperature where wo, C, and D are constants with the values 528,
dependence of the damping constant based on three- -2.96, and -0.174 cm - , respectively. Equation (3.10) is L --t.
phonon processes (cubic anharmonicity in second order) the analog of Eq. (3.8) and specifies the contributions of
and the simple Klemens 5 model. It seriously underesti- three-phonon and four-phonon processes to the frequency
mates the damping constant at high temperatures. We at. shift. The agreement between the experimental points and
tribute this discrepancy at least in part to the neglect of the solid curve is seen to be good.
four-phonon processes associated with the diagrams in If we try to fit the experimental data with three-phonon
Figs. l(f) and 2(a)-2(c). processes only by omitting the term in Eq. (3.10) with the

It is of interest to investigate whether this discrepancy factor D, we obtain the dashed curve in Fig. 7 with
can be eliminated by generalizing Eq. (3.4) to include the awo=529 cm - 1 and C=-4.24 cm - 1. Although this
contribution of four-phonon processes. Following the ap- curve fits the data well at temperatures up to 600 K, it is
proach of Klemens' we write the kinetic equation for the clearly inadequate at higher temperatures. This demon-
net rate of decay of an incident phonon into three thermal strates the necessity of including terms corresponding to %
phonons in the form four-phonon processes in the expression for AT).

In principle, the four-phonon contributions in Eqs. (3.8) S
-7(&no) =-B [ (8no+no)(n I + l(n2 + l(n3 +1) and (3.10) should include terms arising from difference

processes of the type represented by Fig. 3(d). We have
-(8n+no+l)nmn2n, (3.5) omitted such terms on the grounds that their inclusion

-(8no~-. Onj."~ , -.3.5)

where 8n0 is the deviation of the incident phonon occupa-
tion number from its thermal equilibrium value no and B

525

is a constant. Using the equilibrium condition

no(n I + )(n2 + )(n 3 + 1)-(no + )n In2n3 =0

(3.6) 515

we can rewrite Eq. (3.5) as .10

d
d(bno)=-B( nln 2 +nln 3 +n 2n 3+n +n 2

n3+ )8no • (3.7) , "

Energy conservation can be satisfied in the simple Kie- 495

mens fashion by setting W=W2=3=wo/3. Consequent- - o 0 - 5 -- ,S Mo,
ly, nI=n2 =n3. The generalization of Eq. (3.4) to four-
phonon processes then takes the form FIG. 7. Temperature dependence of the line position f for

the Raman-active LO mode in silicon. The solid curve gives the
r(T)=A I+ 2 +B 1 +_-L + 3 theoretical fit using both three- and four-phonon processes. The

e--  1 +ey - 1 (e"-1)2  ' dashed curve gives the theoretical fit using only three-phonon .'. .. - .
processes. The open and closed circles have the same signifi-

(3.8) cance as in Fig. S. T-1
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would simply introduce additional terms varying as T and and Wallisl0 for anharmonic properties. Long-range
as T2 in the high-temperature limit and would not add forces are necessary for a proper description and can be in-
any new qualitative features. troduced via a shell model,1" a bond charge model, 2 or a

model containing dipole-dipole and/or quadrupole-
IV. DISCUSSION quadrupole interactions. 9'0 , 3

Cowley' has carried out a calculation of the frequency
We have seen in the previous section that the extension shift and damping constant for silicon at temperatures up

of the Klemens-Hart-Aggarwal-Lax model3'5 to include to 500 K using a shell model for the harmonic forces and - -*":

four-phonon processes provides a good fit to the experi- a nearest-neighbor model for the anharmonic forces.
mental values for the frequency shift and damping con- Reasonable agreement with the experimental data was ob-
stant of the Raman-active mode in silicon up to 1400 K. tained by Cowley for the frequency shifts, but not the
This fit is achieved by suitably choosing two adjustable damping constant.' We are currently engaged in making a
parameters for each of the two quantities. Since one calculation of these quantities using the long-range force
would expect the contribution of four-phonon processes to model of Wanser and Wallis generalized to quartic anhar-
be small compared to that of three-phonon processes, the monicity.
ratios B/A and DIC should be small. The actual values
of these ratios are 0.08 and 0.06, respectively, so this ex- ACKNOWLEDGMENTS
pectation is fulfilled.
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FUNDAMENTALS OF LASER ANNEALING
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One of the most fascinating debates in the field of Semiconductors Physics
in recent years ,centers on the fundamental interpretation of-*laser anneal-
ing. The question of the energy transfer from. an intense beam to a disor--
deradraterial, such as amorphous silicon, resulting in the crystalliza-
tion of the amorphous substance has been approchd fromt two different
points of view, both referring to a set of fairly clear experimental re-
sailts. On one hand, a claim has been made that the laser beam simply hecats
the sammplc up to melting the amorphous material which on cooling crystal]li- .-

zes from1 -rellt U-4) .On the other hand, ono has considered that amorphou)is
* to crystalline phase transition can occur at low temperatures without

passing thircugh tile moltLen state 5j. Many arguments have been deave lopped
in sui-yort of these interpretations. Al1arge number of publications have

* aPppeared in the literature.

In) addition to the fundamental interest, laser annealing has been
cos -cud tohve a stogptnili h lehology of semiconductor 7

doping by ion implantation. For all these rearons, the attention of a lar-
6L, audi duce has been focussed on this problem.

2. STRUCTI"RAL ANALYSIS AFTER LASER ANNEALING

2.1. Am-,orphous - CrysLalline transformation

The aiimi of laser anneiling is to achieve the transformation of the amor-
phous material obtained by ion implantation into perfect crystal . There-

*fore, we shall first discuss the results of the -- tictural analysis after
L.. anitealing.

AOne o f the methods which seems to be most appropriate to define the
q ~e of crystalliity of the material is light scattering. The light %

scattering spectrum of amorphous silicon for example, is very different
fi;rm that of the perf(ect crystal.

.-ascr annealing performed with Ruby Q-switched laser delivering puises
(Iof a loiit (ne hundired natuoscconds with energy density of the. order of one
J/cn- is c;!_r ibed by Morhange L6 3 . At this energy densi ty, the diamete~r
of t licpn: 1 , iscr hem was of the order of one mm. The annealed regi on

s o.y~)kdwith at, A,: ,oLL laser probe boam focuissed to a diameter of 80 inn.
h.L ir uis .d 1.,)I- Raman s pertror~c opy . Vi th th is arrangement , i t

Wn 7 to (,x)lore the annealed regi on ini the xy 1)1 :ni by moving the
FI' *.- L r iegr 'I n- 1 lie prbfe bean) and i tho 1107 d i roe t i Oil by V'Iry i Ili' thet(
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frequency of the probe beam inducing changes in the penetration depth in
the a-Si sample.

Two parameters characterize the annealed Si the frequency position of
*the Raman line and its half width. For monocrystalline Si, the Raman acti-
*ve normal mode is observed at 520,5 cm- 1. with a half width of 3 cm- . When
ion implanted samples having a thickness of the amorphous "layer of 5000 A-
are investigated, the annealed region does not show a uniform single
crystal structure. At the center of the i radiated region, the Raman peak
frequency is 519 cm - , shifted by 1,5 cm towards lower frequencies. The
width of the peak is 6 cm-) significantly broader then the single crystal*
peak. V.hen the probe beam is moved towards the periphery of the power _1
laser irradiated region, the frequency shift increase and reaches 5,5 cm .
at the edge of the annealed area. The band is also broader and nas a
width of 10 cm- 1 near the edge. These results are displayed in Figure I,
where the circles represent the extent of the power laser beam and the
does indicate the position of the probe beam for the spectrum represented
on the left side of the figure.

Figure 1. Raman spectra coming from
various points along a

-. diameter of a laser annealed

0 region. From J.F. MORtANCE
et a]. Proceedings of the
Mater-al Research Society
Annual Meeting, Boston,
1978 (American Institute

of Physics, New-York 1979)
-; p. 429.

CC

C

(A) .(cm-'

The3e results could be viewed as follows. Even at the center of the
* annealed region, laser annealing does not lead to a large single crystal

in the way it would be obtained in equilibrium epitaxial regrowth.
Instead, the annealed material consists of large polycristallites whose
dimensio~ns decrease as one approaches the interface between annealed and
amorphous material. The recrystallization occurs'as a result- of rando

nucleation in the amorphous layer. The dimensions of the crystallites .

,-d- -- .,- 7 ,



depend on energy distribution in the incident power laser beam. The crys-
tallite dimensions determine the frequency shift ofthe Raman active nor-

mal mode band. An account of the normal mode frequency shift as a function

of the dimension of the crystallite is given by a simple lattice dynamics

calculatibn developped by Kanellis [7] . The model used in this calcula-

tion is that of a thin slab limited in one direction and infinite in the-. -
plane perpendicular to that direction. In the case of Si, the results
obtained are shown in Figure 2.

.Figure 2. Frequency
variation of the higher-

520 - frequency optical modes

as a function 6f the
number of cells. ,
From G. KANELLIS et al.,

7*E Phys. Rev. B21, 1543 (1980)• " ' .-..-:" :" """ 
'

x Y mode

* .Z mode

L.

48G

460[ -----.
........- .' :

* 45,'% * I%

1 5 10 is 20

Thickness (number of cells)

In this figure the frequency shift of the two high frequency modes are *. ,,
represented. These are the surface modes which in the limit of'infinite
crystal tends toward the Raman active mode at the center of the Brillouin
Zone. These calcylat.ons show that for crystallite having dimensions -

smaller than 80 A, a noticeable frequency shift should occur. Indeed, the
experimental observations show that in the region near the crystalline- **

amorlihous interface a significant frequency shift is measured. From this *.-

theoretical model and the experimental results, we draw the conclusion -'
that in laser annealing, the crystallization occurs randomly.

An amorphous network iE not a perfectly regular structure. The energy
supplied 'by the laser beam at threshold is..sufficient to soften bonds in
the less favourable topological situation and allow nucleation. Crystal- .

N
' .I.nn... **



lographic ordering develops around the randomly distributed nucleus embed-
ded in'the amorphous background creating microstalline clusters whose size
depends on the energy density distribution.

First order phase transitions such as melting or crystallization take L *
place, in general, via nucleation and growth of microphases. Unstable
phases of Si have also been prepared in high-pressure experiments L8]
Phillips [93 has given evidence of metastable phases in laser-induced and
thermally.reversible microcrystallization in the chalcogenide glass formers
GeSe 2 . Recent light scattering experiments LO0 shows the existence of
microcrystallites embedded in the glass (GeSe2 ) during laser annealing. The O

micro crystalline clusters initially formed are free to rotate and form
, larger clusters, a fact which-is expressed by Raman line narrowing and

demonstrates a precursor effect in the laser induced glass to crystal
transition. These experiments although achieved in different materials
and .in a very different time scale might be suggestive of the.processes
occuring in silicon.

2.2. Picosecond laser induced patterns on silicon single crystal surface

It is generally believed that monocrystalline silicon being a well defined
target would yield unambiguous indication about the mechanism of the-
transformation.s produced by a laser beam on a semiconductor.

The surface of a silicon single crystal ma be transformed into an
amorphous layer by a single picosecond pulse (l1] . Optical observation
show the formation of an amorphous ring pattern on a (I1) crystal
surface after exposure to a laser pulse at 532 nm with an average duration
of 30 ps and with a spot having a size of the order of 5.10 - 4 cm2 . At

.-, lower intensities, the ring diameter becomes smaller, the amorphous region
coalesces to a spot at the center and disappears below a criticll intensity

" threshold. At 532 nm, the threshold is reported to be 0,18 J/cm for (100)
2 7and 0,08 J/cm for (11) surfaces. Amorphous rings rather 2than central

spots are 2formed for intensity levels exceeding 0,24 J/cm for (100) and [ 41
0,12 J/cm for (1]]) surfaces. The center in this case is a single crystal.
with the same orientation as the substrate. The amorphous nature of the
rings was deduced from an inc'ease of the reflectivity compared to crystal-
line silicon and was confirmed by electron diffraction with a transmission
electron microscope.

o
The annular pattern of the amorphous phase is interpreted in terms of

* cooling rate and crystal-growth speed. It is first assumed that above
threshold, the laser pulse induces melting of the silicon target. , .....

Following laser pulse melting, two limiting cases are then proposed
just gbove the threshold intensity, a layer of depth somewhat smaller than
5.10 - cm is cooled in t = 3.10- s and the condition, d/U j >t , for -
lnuclvatior of an amorphous solid phase, is fulfilled. Well. above Phe thres-
hold intensity, the temperature of the molten layer rises far above T

mand the cooling rate in the critical region below 0.8 T becomes longer.
m* This gives a description of the annular pattern of the amorphous phase.

2.3. Pi~osecond laser annealing of implanted silicon

Experiments analogous to that described in the previous chapter for silicon . . ,
singlo, crystal surface have been performed by Liu et a L12] on ion -
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implanted amorphous silicon.
.. . '.., , ,. ..

With a laser beam of 1.06 Um, beside the annular amorphous region and
recrystallized center, one also observes a recrystallized ring. Both the 7

* "ring and the center are polycrystall. The energy fluence level to form 2the
.ring is 0.22 J/cm . It is 0.35 J/cm for the a-Si region and 0.85 J/cm

or the recrystallized region. ~a..

Rozgonyi et al [13] have re-examined the structural modification of .
amorphized silicon surfaces following picosecond laser irradiation using
cross-section transmission electron microscopy and showed that the center
is always a dislocation fiee single crystal encircled by poly-silicon-
ring. This observation is consistent with the results of Mokhange et al
C14J obtained by Raman spectroscopy.

More recently, Nissim et al [15] have performed light scattering measu- "

rements analogous to. that reported by Morhange et al. [14J scanning the
irradiated area with a probe laser beam focussed on a I pm diameter spot.
When a single 30ps pulse at 1.06 and 0.532 pm wavelengths from a mode- ,.-
locked neodymium : Yttrium Aluminium Garnet laser is used, a multi annular..-
recrystallization pattern is observed on implanted silicon. At high
incident energies, single crystal silicon is observed in the central spot
and in the first recrystallized ring of the annealed area. With an irra-

* . diation at 1-06 pm, the threshold of laser induced damage was found to be
above 2 J/cm o The multi annular pattern has been ascribed to multiple
melting resolidification process during the pulse duration leading to the *...

superposition of basic structures of different sizes.

For the understanding of this complex structures, it should also be
remembered that periodic surface structures on solids may result from
inhomogeneous energy deposition associated with the interference of the
incident beam with a surface scattered field as discussed by Van Driel
et al [16].

3. TIME RESOLVED ANALYSIS OF PULSED LASER IRRADIATION OF SEMICONDUCTORS

For the discussion of the data obtained by short laser irradiation pulses
one could distinguish three different time ranges : i) very short time
scale, t << 10- 2 s, where the system is in a far from equilibrium state,.
the seat of highly non linear processes, ii) intermediate time scale,t ,_ 10

- 12
t ~ o- 12 s when different e ementary relaxation processes take place and

iii) long time range t 5 10 s when thermalization occure and the ,. .'

system tends toward equilibrium.

3.1. Investigations in the very short time range

2.A radiation beam, of energy density of I J/cm , is bound to produce a
strong pErturbation on the material at the instant of interaction. The
photon density is such that a hot electron plasma might be produced.

The experiments in the shortest time scale are these of optical pulse ":."" e
induced phase transitions in silicon described by Shank, Yen and Hirlimat -n

17] . They reported the first observations of optically induced reflec-
tivity changes in silicon with 90"fs optical. pulses.

The results of reflectivity measurements are shown in Figure 3. The
boo"-%.
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energy E is defined as the excitation energy density where visual evi-
dence ofa morphous layer formation is observed. This energy corresponds
to 0.1'JI/cm2 .

Figure 3. Transient reflectivi-
ty data in Silicon at probe
wavelength I prm and pump
wavelength 620 nm at various'.

U4 ~ ij~mincident energies.
2 5Em From C.V. SHANK et al., Phys. -

. Rev. Letters 50, 454 (1983).

.0.- , 4°E.H

5 10 ; tips 20

-. ,. ".
6 3
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Shank et al [17] discuss the results shown in Figure 3 in the follo-
wing way. Optical excitation of Si with a 2.0 eV optical pulse results 4 S
in the generation of a dense electron-hole plasma within the optical
absorption depth :a =3 pim. They Suppose that during the earlier time
following excitation, the reflectivity is dominated by the electron-ho'le .

plasma. As the pulse intensity is increased, the energy is transfered to
the crystal lattice and the crystal melts. It is also supposed that
melting begins at the surface and moves inward into the bulk.. 0

Probably, the most important contribution of this investigation is the
demonstration that* when the crystal is excited with a short optical pulse %.~ ,\

of 90 fs a form of unstable highly excited silicon is created which per-
sists for a fraction of picosecond. A challenging programme now is to
determine the properties of. this material with at least 10 % of the avai- ~-
lable electrons excited.

'..o'..*%, ...

3.2. Intermediate time range. Picosecond irradiation

Most of the wor' on timc e resolved spectroscopy is in the range of the"0, ,

picosecond for the simple reason that this is the time scale for w"ic"i
short pulse laser sources are readily available. %

Experiinnts in the picosecond range on transmission and reflectiv.ty

were performed by Liu et al. [8J at the fundamental and doubled frequency ........

melingbeinsatthesufac an mvesinardino te blk . --* --
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of a mode-locked Nd :.YAG laser producing a 30 ps single pulse. In this
work are presented measurements on self reflectivity and self-transmission
at X = 532 nm for increasing energy fluence with 20.ps pulses. The self-
reflectivity of bulk silicon with (111) surface starts to increase when the

2energy fluence of the pump beam reaches 0.2 J/cm 2
. The initial rise of the -. -

reflectivity from the crystalline value of 0.37 to a maximum value of 0.48 ,v,... .. ;.

is in agreement with changes in the index of refraction due to melting of a
thin "surface layer. In this case, it is supposed that the hot e-h plasma -.

transfers sufficient energy for melting within the duration of the pulse '-
iltself. Below the critical fluence level of 0.2 J/cm , the photoexcited
e-h plasma causes a decrease in the real part n of the comp'lex refractive
index.

A pump and probe technique was also used here a picosecond excitation
pulse is followed by a slightly focussed weak probe with a variable time
delay.

At 100 ps delay, the probe pulse is tempor.arily completely separated
from the pump pulse and an abrupt rise in reflectivity at the threshold
fluence of 0.2 J/cm is observed [18] . This discontinuity in the car-
rier density should be associated with local structural changes. The
reflectivity rises to 0.75 + 0.03 which is characteristic of molten silicon
at the probe wavelength of T.064 um. This behaviour is observed even at
zero delay indicating that melting occurs within the pulse duration of
20 ps.

3.3. Long time phenomena --

At long time, the energy is transferred to the'lattice which eventually
melts. For the long time phenomena, we are faced with three major problems

i) what is the mechanism of melting, v- *

ii) do intermediate, metastable phase exist in the further thermalization,
iii) what is the microscopic mechanism of resolidification. -/

There are two experimental approaches to these questions
a) determination of the temperature of the system,
b) direct observation of the structural phase transformation during the

evolution of the system towards thermalization.

We have discussed in paragraph 2 the structural observations and the
insight they could be for the dynamical evolution of the system. We shall
now focuss on considerations on the determination of the temperature of the
system the electron gas temperature and the lattice temperature.

3.4. Energy transfert and carrier density

Of particular interest for the understanding of the laser action on a solid
is the analysis of the initial events following the irradiation by an inten-
se optical pulse. Femtosecond spectroscopy has already shown to be a
valuable method for such an analysis [17, 19, 203 . Measurements on the
time dependent reflectivity leads to estimation of the electron hole
density, initially created as well as its evolution with time. Such
measurements are also suggestive for models for the energy transfer during

and after the irradiation.

The questions to be considered are the following



.the rest of te .-s.st'.V
,: . -, .'..

i) what is the electron-hole (e-h) density resulting from the excitation.
ii) what are the interaction processes behind the excitation. ~~ i-

iii) how is the energy stored in the excited carriers and transferred to ,- ..:.
the rest of the system.

*i) electron-hole density produced by/ f emtosecond pulse .".--...

The high density electron-hole plasma in silicon created by a 90 femtosecond
pulse has been investigated (173by measuring the time dependent reflectivi-
ty over a 20 picoseconds time scale, at various laser energies. Such short • 7
pul.ses lead to the possibility to break so many covalent bonds that the
crystal..becomes fluid even at T = 0 K. The carrier nnsit created at this
time scale was estimated to be of the order of 5.10 cm-J under an inci-
dent energy density of 0.063 J/cm 2 . The phenomena produced in such very
short pulses can be viewed in the following way [20) .The part of the ini- 0.
tial laser beam absorbed over a penetration depth of d = 3 Pm creates an
electron hole plasma with a decreasing density profile. After the surface
density reaches a fraction of N_, the plasma density, the refl ttivity and
the penetration depth fall, because of the decrease of the real part of
the dielectric constant as well as-of the increase of tLe induced free -

carrier absorption. For high enough power, the surface density goes beyond
N within the pulse, yielding an instantaneous reflectivity larger than R.
t~e initially reflected beam. At that high surface density the laser beam
becomes a vanishing wave which can create e-h pairs only very close to the
surface.

The reflectivity during the pulse R(t) is obtained through a general
resolution of the Maxwell equations, taking into account the variation of
the dielectric constant via the modification of the e-h density profile.

The experimental data 20 are fitted with a relaxation time T = 3. -16
s. For A 0,31 um the plasma frequency density can be as high as 2.10 <

N <cm - which is ineed very high in view of the total number of
v~lence band electrons (2. 10 cm- ,,.:'-.'.

ii) electron-Ras temperature

An interesting investigation on the photoexcited electron distribution is
performed by non-linear photoemission from silicon by Bensoussan and
Moison [21 . They show that in Si, at moderate fluences an equilibrium.
distribution coexists with the electrons at very high energies in the
conduction band, generated by two and three quantum processes. The
equilibrium distribution is described by a well-dbfined temperature which
differs significantly from the lattice temperature. Because of the fast
photogeneration of the carriers, and of the two photon absorption and
biparticle Auger recombination processes in which carriers are sent
continuously high in the bands, the electron gas can reach an internal "'~~~? . ".-.-
equilibrium characterized by a temperature Te higher than the lattice
temperature T . The experimentally measured thermal emission is interpreted
by the Richargson equation. The temperatures deduced for different fluences
are shown in Figure 4.

.. .. -,...

! ',-% "
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Figure 4. Electron and lat-

tice temperatures vs. photon

flux. .

From M. BENSOUSSAN. Procee-

dings of the 16th Internation-
2000 al Conference on the Physics

of Semiconductors. North-
Holland, Editor M. Averous

(1982) p.'405.
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iii) latticc temperature

Lattice te'iperature at equilibrium can be inferred from light scattering
measurements of the frequency shift and line width of the LO mode 22
and Stokes to anti-Stokes ratio [23] . The Stokes to anti-Stokes ratio
indicates a lattice temperature of 1400 K for a delay of 150 ns after

2
-.. excitation with a power beam of 0.8 J/cm at 532 nm. Raman measurements-

are evidently taken after the high reflectivity falls off.

4. DISCUSSION AND CONCLUSIONS

Laser annealing has now a long history and an abundant literature. The .-.

interesting question, which still remains to be answered, is what are the
elementary processes in the interaction of a strong radiation field with

matter.

The process of laser annealing consists of two sets of phenomena. The
first concerns the effect of a dense radiation field on matter creating
elementary excitation far from equilibrium. The initial hot pla~sma redis-
tributes through interactions between carriers and ultimately thermalizes

giving up energy to heavier particles which are the lattice constituents.
The second set of phenomena, of a completely different nature, concerns
the modifications induced to the solid as a result of the creation of the
dense hot plasma. If the laser pulse is short enough, the e-h density
reached corresponds to an amount of broken covalent bonds which is a
significant portion of the total number of bonds, the crystal becomes .-. ,.-
fluid oven at T = 0 K. Ultimat.ely, tie solid sets in a new phase whose
structure depends on the elementary mechaniisms of :nteraction and organi-

) '-'J ": .
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zation of. the lattice constituents. We. shall examine successively these
two states as : )direct laser effect and ii) consequences of the laser.
.action.

4.1. Direct laser effect 'V

The incident laser energy is absorbed by electron-hole pairs creation and
by free carrier excitation. In indirect gap semiconductors, electron-hole '
pairs are created via indirect absorption processes involving the emissioh -. ..-

and absorption of phonons. Because phonon energies are much smaller than -
photon energy, the amount of energy transferred to the lattice during
absorption is negligible in comparison to the total amount absorbed. The
rise of carrier density leads, in turn, to increased free carrier absorp-
tion. The net result is the production of hot-electrons and holes far from
equilibrium which subsequently thermalize with the set of the carriers and
eventually with the latt-ice. The observations by Shank et al .[17] demons-
trate that with short, 90 femtoseconds optical pulse, an unstable form of
highly excited state is created near the surf-ace which persists for a
fraction of picosecond.

For v~ry short impulsion of radiation, from the experiments C]7,.20J
one perceives clear indications that there are two steps of the laser
action on a crystal well separated in time. In the first step, the electro-
magnetic energy transferred from the laser beam to the solid is retained
in the highly excited non-equilibrium electronic state. In a second step,
this energy is transferred to the lattice.

Recently, a theoretical model 20] is proposed which takes into account A
the space time evolution of the plasma during te pulse in order to explain
the processes in densities higher than I02 cm-  reached in 100 fs pulses.
The novelty in this model is the argument that free carrier absorption is

* ~dominated by e-h collisions with a characteristic relaxation timer T.-.
3.10-16 s.

A different situation is reached with much longer pulses: T n 10 ns
and a photon absorption rate g 110 cm- 3 s-  : Auger recombinaion .. .
becomes the dominant recombination mechanism at these densities.

Most of the laser energy is absorbed by the carriers within the absorp-.
tion depth. Eventually, these carriers loose their energy to the lattice,
the rise of the lattice temperature" then depends on the distance they have
diffused before substantial phonon emission occurs. At moderate density,
the phonpn scattering time is T I0-1 s. Screening does not affect the

rate of intervalley phonon emission until Ne . 1021 cm- 3 . Because screening
increases the elertron-phonon scattering time, it not only decreases the
rate of phonon emission but also enhances diffusion. This increases the
volume of.the region in which the energy of the excited carriers is trans-
flattice. Owing to the extreme non linearity of the hot
carrier effects, it is impossible to make an accurate estimate of the

* . precise temperature to which the lattice is heated or to determine the
laser power threshold above which melting will occur.

4.2. Consequences of the laser action

The equilibrium observations are clear : an amorphous or glass solid is .
transformed into crystal under laser action and a crystal submitted to



• very short laser irradiation is transformed into amorphous. maperial. An
implication of both bf these transformations is that melting preceeds the

' transition. Another alternative is' that the-.phase transition is directly !'.. !'!

induced"in the highly excited state.

" The effect of a dense plasma on the melting temperature is itself an
interesting problem of solid, state theory. This question has been recently *..'

d addressed by Bok and Combescot [24] It is shown that in the presence of .

a dense plasma, the melting temperature of a solid changes. The melting
temperiture decreases with increasing'plasma density. For a laser pulse of '. .
I JI.cm during 10 ns, it is considered that e-h plasma reaches a steady "
state in a time shorter than the laser pulse. Considering the plasma
expansion due to its high pressure, i.ts collision with phono and3Auger
recombination, the highest plasma density is of the order 10 cm . This
density'is nevertheless considered to be sufficient to considerably reduce
the melting temperature so that a metallic layer of liquid silicon is formed

-at the surface.

The role of a high plasma density in laser annealing has been discussed
by Van Vechten et al. j in a quite different way but still involving
electron-phonon coupling and lattice instability induced^3y this interac-
tion. Above a critical carrier density estimated at 8.10 cm , a second .
order phase transition occurs. At this plasma density, the bond charges
will be so depleted that they will no longer be able to stabilize the TA
phonon modes E25J . The crystal will no longer resist shearing stresses
and will become fluid. This fluid is distinct from the normal molten phase
of Si the latter beeing the result of a strictly first order phase
transition driven by the atomic motion at high temperatures. The assumption
of Van Vechten is that the plasma is supposed to directly induce the
structural transformation. The energy is retained in the electronic system
instead of beeing entirely associate with the atomic motion. As the plasma
becomes less dense due to expansion and to transfer of energy to the
lattice, the materjl will pass back through the second order phase
transition at 8.10 cm- 3 and covalent bonding will gradually appear. The
material will finally recrystallize if this process is relatively slow
or will solidify in the amorphous phase if the process is very fast.

This dense plasma phase could be compared to the highly excited silicon
which persists for a fraction of a picosecond 17, 20] . The interpretation
of the laser action differs nevertheless with regard to the following step
it is generally considered that the solid melts after the initial inter-
action stage.

In conclusion, few points appear clear today. The laser interaction ..-.-
with the solids results first in the creation of a dense plasma which ".

*4-* persists for a fraction of a picosecond. Melting seems to -occur after the

excitation pulse. The mechanism of melting is not clear and consequently -- ,
the mechanism of solidification is not clear either. Further investigation
in the very short impulse regime aro certainly desirable to clarify the
physical processes in laser annealing.
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